I have a class that fetches data in response to button presses in the main activity. Unfortunately, I keep running into problems because this class is not an Activity or a Service. For example, without a Context I cannot translate a resource id into a string:
getString(R.string.example_string); // Doesn't work
Should I make this class into a Service and have the main Activity stop the class when it is closed? Should I pass the Context from the Activity into this class like this?
MyClass c = new MyClass(this);
Or is there some better way to handle this problem?
This issue also comes up when I try to send a Toast from this class.
Update: Erich and Janusz pointed me in the direction of the AsyncTask class which works perfectly, except that it creates a new thread and never kills that thread. This means that ever time the user presses a button, another thread is added and the old ones just sit there.
If you have a background action whose lifecycle is decoupled from your activity, I would use a Service. In that case, the Service will have its own Context, so you won't need to pass it in. If, however, you need to perform a background action in response to a UI event (and optionally post the results back into the UI thread), I would recommend you use an AsyncTask.
I agree with Erich, if you only have a something small like posting a change to a web backend or loading something from the phone memory to show it on screen use a Async Task. If the task will exit very "quick" (some seconds) you can make an anonymous class inside your activity. This will enable you to use a implicit reference to the outer activity inside the task and you can get your context from there.
If the task is running for a longer time you can pass down the context. If you are passing down the context try to not pass this from the activity use this.getApplicationContext() this will minimize the number of references to your activity and enable the garbage collector to clean up properly.
Related
Ok first of all android is really confusing. The scenario is I have about two runnable classes which are created from a Login View and if logged in it will create another view which will have other data and even more activities can be created from there
Now I can pass the the Login view context when creating a thread for the runnable class and edit out UI elements in them like this:
((Activity)someContext).runOnUiThread(new Runnable(){
public void run()
{
TextView txtErr = (TextView) ((Activity)someContext).findViewById(R.id.errMsg);
txtErr.setText("Some message");
}
});
But the issue is there will be more activities that will be created and the runnable class is created at the time of logging in, and I can't keep passing contexts.
Is there a better way for accessing the UI elements of different activities from different threads?
P.S: the threads which will be accessing the UI elements doesn't extend Activity and are running in a separate thread.
EDIT
I think I need to make my question more clear... I am developing a client app for a messenger... The process goes this way... User clicks on login button which creates a thread in a separate class named ClientThread for handling socket connection and keeping the connection alive till the user logs out or connection drops. The ClientThread class loops till the socket is connected and whenever some data is received the data is passed to another thread in a class named ProcessDataThread which do the parsing of data and will update the UI accordingly.
Now in a response from server if the user is logged in I want to create an activity from that class and keep a context to that activity in ProcessDataThread as I will be updating UI on further responses from server. And if login fails ProcessDataThread will display a message on the main activity saying login failed, now I was able to achieve the later by passing the context from the MainActivity to the two threads when clicked on Login like this:
global_constants.clientObject = new ClientThread(this);
global_constants.clientThread = new Thread(global_constants.clientObject);
global_constants.clientThread.start();
And then from ClientThread to ProcessDataThread
global_constants.updateConversationHandler.post(new ProcessDataThread(SharedBuff, cntxt));
But how will I create more activities from a non-activity class and do all update them or find a UI element etc...
Not sure if I understand you, but it sounds like you are trying to control the view of an activity from outside of the Activity. This sounds hacky to me. I'd let each Activity manage its own UI.
A good way of doing decoupled communication between objects is the observer pattern, aka an "event bus" or "event dispatcher" system. An example of how to do this on Android is here: http://www.therealjoshua.com/2012/03/event-dispatching-sending-messages/
Basically, the code that's generating the error should dispatch a message. The Activity can listen for this message, and then update its own UI as needed.
EDIT
Thanks for the clarification. I think the observer pattern can still help here. Basically, your data processing threads shouldn't know anything about the UI. Just have them post an event for the error, optionally with additional info on the error. If you want, your event dispatcher class could even make the actual event calls on the UI thread itself using a Runnable like you showed, so that the listener can always assume that they are being called on the UI thread, if this is important for your design. This way you don't have to pass the context to the thread at all (at least not for purposes of updating the UI) - let the worker thread just be responsible for the work, and the activity can be responsible for its own UI.
Another option you could use is an android Handler (see http://developer.android.com/reference/android/os/Handler.html)
In this case, the work is still done in another thread, but the Activity receives a handleMessage callback from the thread at the appropriate time. I haven't used this myself but from the documentation it looks like it can get the job done for what you need.
In either case IMO, the responsibility for updating the UI should lie with the Activity, not the worker thread.
I have previously had my App working with just activities and am now working on converting to fragments in order to improve the UI.
Previously my Activity started an AsyncTask and passed in itself to be used as the Context when certain methods required it (not UI operations, but calls to shared preferences and content providers). I have now learnt that this approach can lead to undesirable outcomes if the Activity is destroyed and garbage collected, but it did compile and run fine.
I began this change because I wanted to make my loading screen behave better when the app was paused and stopped. I realised people frown on loading screens in Android but for me it is required as I have an operation that will take 20 seconds or so and that needs to be completed before the app will function.
So using this guide, I began improving my app.
In short the guide moves the AsyncTask into a Fragment that does not have an attached UI, with a separate Fragment for displaying the loading screen with ProgressBar. This means that the Fragment that spawns the AsyncTask does not have a Context, meaning I cant pass one in to the AsyncTask.
As I said before I have operations in the AsyncTask that require a Context object, so where can I get it from? Should I just pass in that data to the AsyncTask before I start?
As far as I know, the context is not a static property, so you actually need one object to retrieve it.
Thus, you can either go the "hack-way" as in this post:
Static way to get 'Context' on Android?
or you can follow Android guidelines and use a Service for your background loading. Remember that AsyncTask is an utility class designed to help in background operations that later need to communicate with the UI, so you should use AsyncTask in correlation with a UI object.
If you, instead use a Service, then you got no problem, since the Service object itself is the context that you need.
If your AsyncTask is not handling any UI components you can use the parent Activity's context. So where you previously passed in this you'll now pass in getActivity(). Note, if you do have it changing the ui this will set you up for Null Pointer Exceptions.
I am writing an Android app (ICS) for a tablet. The user moves from Activity A to Activity B to Activity C with the touch of a button. I want to return from Activity C to Activity A after 10 seconds. Is there some way to count to 10 without locking up Activity C?
I've succeeded with an asyncTask but if I startActivity(A) in the onPostExecute() it feels like I'm violating the guideline that an asyncTask should not mess with the UI. I've tried get() but that does lock up Activity C while it's waiting for the 10 seconds to pass.
Thanks in advance!
Assuming you have any View instance in your activity, you can use View.postDelayed() to post runnable with a given delay. In this runnable you can call Activity.finish(). You should also use View.removeCallbacks() to remove your callback in onDestroy(), to avoid your callback being called after user already navigated back from your activity.
Using AsyncTask just to count some time is just an overkill (unless you want to use AsyncTask to actually do some useful, background work). The Looper and Handler classes provide everything you need to execute any code on UI thread after a given delay. The View methods mentioned above are just convenience methods exposing the Handler functionality.
Using AsyncTask works fine as you describe. From Android Documentation:
onPostExecute(Result), invoked on the UI thread after the background computation finishes.
Since it is invoked on UI thread you should be fine.
Documentation
You can use a alarm manager for that. Set it to send a broadcast 10 seconds starting from activity a and implement a base activity for activity a b and c to receive the broadcast, after receiving the broadcast just end the current activity and start activity a with a new flag. If the current instance is activity a then ignore if not start activity a. Something like that.
As for the idle part you can update the alarm manager on every action, upon entering activity etc.
The advantage of this implementation is that you dont have to go through the hassle of having to worry about context leaks, persisting timers across activities and such. and can make use of what is already there. You can also consider using a service though.
If not you can just use the shared preference store the time to time out and check or update against it for the actions.. A simpler implementation.
Good luck.
From the Activity, I am creating a Handler to fire off my AsyncTask every 45 seconds in order to refresh the content of my ListView's DataAdapter. The AsyncTask works great and keeps the user informed on the progress through ProgressUpdates and Toast messages.
Since the thread's doInBackground is fire and forget and not re-usable, I am having to create a new instance of the AsyncTask from my Hander that is firing off every 45 seconds. The problem is when the screen is rotated and and then I get concurrent messages going off because the Hander was recreated and created a new instance of the AsyncTask, so the friendly user progress through ProgressUpdates and Toast messages is overwhelming and makes utilizing the ListView difficult.
And please don't suggest this as a solution: android:screenOrientation="portrait" is not an option.
For something that has to run so frequently, should I just be using a custom Thread and not the AsyncTask class? ToDo: Not shown, I have to update the Adapter later from the Sensor's onSensorChanged event to update bearings on for each location in the ListView, I was going to run that on a separate AsyncTask class because I don't need to notify the user everytime the device bearing has changed.
Since the AsyncThread cannot be reused, am I doing this all wrong? In short, what is the best way to have the Activity refresh the ListView and keeping off the UI thread when doing so?
The problem is when the screen is rotated and and then I get concurrent messages going off because the Hander was recreated and created a new instance of the AsyncTask.
Reason quoting from API Activity - Configuration Changes:
Unless you specify otherwise, a configuration change (such as a change in screen orientation, language, input devices, etc) will cause your current activity to be destroyed, going through the normal activity lifecycle process of onPause(), onStop(), and onDestroy() as appropriate.
So every object has a activity-scope life cycle (i.e. Handler, AsyncTask and etc. defined within your activity class) is suffered by this activity recreation. However, you can bypass this activity recreation, as stated in the later paragraph of Activity - Configuration Changes section:
In some special cases, you may want to bypass restarting of your activity based on one or more types of configuration changes. This is done with the android:configChanges attribute in its manifest. For any types of configuration changes you say that you handle there, you will receive a call to your current activity's onConfigurationChanged(Configuration) method instead of being restarted. If a configuration change involves any that you do not handle, however, the activity will still be restarted and onConfigurationChanged(Configuration) will not be called.
Not related to topic, but as a good practice, you should always destroy used object (Handler, AsyncTask and etc.) properly when activity is about to finish (i.e. in onDestroy() method).
For something that has to run so frequently, should I just be using a custom Thread and not the AsyncTask class?
AsyncTask is pretty handy but not suit for periodic task, I would use ScheduledExecutorService or TimerTask in this case, check out my answer here for sample code.
Can you please post a bit of your code ? It may be useful to understand where your problem is.
As york has pointed it out, you should probably use TimerTask. It seems that it suit better with what you are trying to do.
If it is the creation of a new instance of the Handler that create the probleme you can try something like this :
private Handler mHandler = null;
#Override
public void onCreate(Bundle _savedInstanceState) {
super.onCreate(_savedInstanceState);
setContentView(R.layout.my_layout);
if (mHandler == null) {
// TODO create your handler here
}
}
EDIT :
You can test _savedInstanceState == null too.
_savedInstanceState is used to save the state of the activity so turning the phone shouldn't be a problem anymore.
However, if you leave the activity and then go back to it, it will create a new handler (except if you instanciate it as a static variable).
I know how to use handlers to update UI elements such as progress bars toasts etc.
The problem I am having is when the context goes away such as the user pressing the back button or the Activity finishing for some reason. This causes my application to crash often.
I tried using getApplicationContext() (Thinking that this would be available throughout my entire application) but this did not work, ever - instead my application crashed!
I put try catch blocks around all UI update code, this works but is it necessary?
So...what is the bast way to handle this?
The problem I am having is when the
context goes away such as the user
pressing the back button or the
Activity finishing for some reason.
This causes my application to crash
often.
You will also get this, by default, if the user changes screen orientation, as the original activity is destroyed and a new one created.
I tried using getApplicationContext()
(Thinking that this would be available
throughout my entire application) but
this did not work, ever - instead my
application crashed!
The application context is useless from the standpoint of manipulating the UI.
So...what is the bast way to handle this?
In the end, what you need is for your thread to deliver an event to the right activity. Some techniques that people have used include:
Use a listener pattern (e.g., service manages the thread, activities register and unregister listeners with the service, thread invokes the listeners on key events)
Put the "current" instance of the activity in a static data member, which the thread uses to find out which one should be used (dangerous due to memory leaks and fails if you need multiple instances)
Limit background threads to ones that cache data, which the activity pulls (e.g., via polling) as needed