I am currently working on an Android App which has different service dimensions, such as " service order", "route planning", "photo gallery" and a central login.
so far i implemented each "screen" (and by screen i mean actually the layout of a screen) as a seperate class, which loads a specific layout and handles all listeners and core functionalities such as calling webservices in a thread, receiving answers etc.
I am not quite sure if this is the best way to implemnt mulitiple layout-screens.
The Android dev guideline proposes to use single activities for each "screen layout". However I doubt that this is the most effective way of doing things. Since i need information for each "layout" which are retrieved by the central login (here: a user object). Since an activity (as far as i understand) is a seperate thread, the passing and retrieving of information seems not very practical.
I would like to get your oppinions/feedback on that and thanks for any hint or tip.
So far my structure looks like :
Activity
loads login layout (res/layout/login.xml with setlContentView)
depending on buttonclick other resources are loaded and initialized (means listeners are added etc.)
Greets
Peter
The dev guidelines recommend that for a reason. It IS the most effective way of doing things. You may complain about having to store your data so it can be passed along from activity to activity, but guess what? You're developing an app for a phone! At any point in time, the phone could ring, forcing the user to switch away from your app. Or the user could just choose to temporarily look at a different app. If your app goes back to square one after switching back and lost all data, the user will be understandably angry.
Don't know if this would be suitable for your app, but another option could be to split off the core data handling into a Service, and have your app be just a UI frontend which communicates with that service.
Related
After reading through all the questions on SO regarding this topic i am extremely annoyed by this.
Crashes will happen, no one writes perfect code. And there are apps that require a certain logical hierarchy. The best example is the login-screen idea, where you are in some activity doing something on a server and now the app crashes. After a restart, the app lost all its login-session data and saving it might not be the safest idea. So presenting the user with the login screen after a crash would be the best and most logical thing to do. The best user experience.
However Android decides to remember the Activity stack but only restart the last working activity with a "blank" application under it.
The only viable option i see would be to check in EVERY single activity if some login state is available or not and if not, start the login (launcher) activity with a clear-top or clear-task. But this almost forces you to write a base extends Activity class in which this behavior is implemented and then all activities have to extend that. But what if, for some reason, you cannot extend it because you need to extend some other type of activity?
There is android:clearTaskOnLaunch but this happens every single time the user returns from exiting via home button. There is the antagonist finishOnTaskLaunch that finished an activity every time the user presses the home button. So the Android devs are aware that sometimes one would like the app to appear in a certain state after exit but a crash seems to be exclusive to all that.
Using a custom UncaughtExceptionHandler gives me some chance to act after a crash but as the apps state is unrecoverable i can only perform certain tasks that will happen in addition to Android very own behavior.
So my simple question is, if there is any way, that is built into Android, that allows me to change the after-crash-behaviour of Android in a natural way that does not depend on the version it's running (to some extent ofc) and will result in a somewhat smooth user experience.
I would say the proper way of obtaining the result you would like would be to provide a proper parent or up navigation stack. You can read about it more here https://developer.android.com/training/implementing-navigation/ancestral.html.
But the gist of it would be to use the idea of parent activities to provide proper back navigation. If the activity already exists it will just go back to it, if it doesn't (such as in the crash scenario) it will launch the correct activity when the user navigates back.
NavUtils is a handy class to help build this behavior and is part of the support library which would work on a range of different API levels.
I have a use case where I want to download some files from the server and store them locally before starting another activity that is dependent on this file. This kind of design can be found on karaoke kind of applications where clicking on one song would
Load the required files from the server
Once the download is finished, open the required activity.
Let us assume that my app is a karaoke app. My question is how to design this flow. Basically, on clicking on one song, I want to show progress on the screen and when the download is finished, I want to move to the activity. Another requirement is that once I am inside the karaoke activity screen and playing a song, I have an option which leads to loading of another lesson. If a user uses that option, I want to again download the required files. Based on this requirement, should I:
Have the file loading thing as a separate activity?
OR
It can be used as Fragmentinside the activity where I choose a particular song. In this case, once entering the karaoke screen, if I choose an option which leads to downloading some files and reloading of this activity, is this the best design?
I would recommend two different approaches depending on how long you plan on keeping the data that you've downloaded. If it is single use than a bound service would be ideal. However, if you are planning on keeping the downloaded content for more than a single use, I would recommend you use a content provider and possibly a sync adapter(Depending on how frequent/predictable content downloading is). This combo would help guide you into not having to think about the 'design' as much(Since it is pretty standard at this point), plus it would provide a lot of features that you may/may not find useful: you can make your internal data 'public' via the content provider/authority(s), you can make an 'account' on the phone associated with your app so that the user can manage its syncing via the sync manager(actually via widgets/apps using the sync manager, but still), and most importantly a set of clean(ish)/standard means to interact with it/propagate UI, etc.
My simple version would be an Activity that spawns either a async-AIDL service with callback (which is in my opinion the only way to use a bound service) that would allow you to asynchronously design your 'starter' activity, its "currently downloading" spinner (which can get progress updates via the callback if you design it that way). Then once the download is complete then send the results (via a parcel file descriptor in the Intent's bundle) to the new activity that makes use of it.
However, if you are planning on using the data more than once, I'd recommend downloading the content like you did above, but then also store it in a content provider for easy access later. Providers also have a lot of nice associated functionality related to cursor loaders, etc. that will help keep a list of the content currently being stored nice and clean/up-to-date/dynamic/etc. However, this is a lot more work to setup once, then later it would save you time in reduced.
A sync adapter is best when the data to be downloaded is predictable, either based on user's account or temporally (such as someone having an account to download data from (email account, etc.) or when the target is fairly constant, but the data should be updated every hour or so(such as the current weather)). So this will depend a lot on your application's exact specifics.
Here is an assignment for an Android App Development course I wrote that is an even more simplified version of the first option (it has intent service + broadcast receiver for returning download results back to the Activity). Obviously since this is an assignment it has sections cut out to make skeleton code, but the documentation is ABSURDLY detailed and should be fairly easily implemented.
https://gitlab.com/vandy-aad-3/aad-3-assg-2/tree/master
Here is the extension of that assignment for that same course that focuses on implementing a simple content provider's 4 main methods (Create, Read, Update, & Delete). Everything else about the provider is given to you.
https://gitlab.com/vandy-aad-3/aad-3-assg-3/tree/master
Obviously the content being downloaded in both applications is probably not what you intended, but that is a simple swap to replace in what you do want.
Not to shill to hard, but here is the (free) Specialization that this course is a part of: https://www.coursera.org/learn/androidapps
Point one : Don't download video file within the Activity level. You can start a Service to handle it. Once the download function is finished you can start the second Activity. While download function is in progress you can show a ProgressBar
Point Two : Best Design is show a ProgressBar with percentage to user. Or disable the function. After download complete enable or start the second activity.
I'm starting to work with Android, and as far as I have read, the main structure of an app is a group of more or less independent Activities where one is the main, and from there you launch one or another.
My problem is that some of those activities spend some time when they are created to generate some data, that is lost when the activity ends because of the paradigm of Android.
Also, I want to have some overall control of some parts of my program. For example, I activate a sensorListener in one activity, and I want to keep it working after I end that activity (by pressing "back" or launching another activity).
Is it possible to have some common structure to all the activities where I can place reusable data?
Also, I whould like my app to do something periodically , no matter what activity is working at the moment.
Do you know if there is a "well designed" way to program this overall data structure and periodic tasks?
You can use your "Application" class to have an entrypoint. This class won't get dealocated, you can save references in there, however, this is not a good style of programming but I have seen it a lot. If it's possible, a better way is to use threads, e.g. "AsyncTask" class. Here you can perform your operations and populate the activity on the fly.
As L7 pointed out you may use "service" as a long running background process for your sensor, this is also the recommended way of android.
First I'm sorry for my english that is not so good :).
I am facing a problem to develop my app.
That is a general architecture scheme of my solution.
http://i.stack.imgur.com/ooTmE.png
To be quick, the app has to decode code bare but with two possible ways:
using exernal device (The constructor provides a sdk containing an android Service to communicate with the device),
use the camera of the mobile using the library Zxing which is possible to manage it with intent.
The goal of my own service is to manage some business code and make transparent the choice of the tool for the user.
I believed that was a good solution but I wanted to implement it and I had different problems.
My main trouble is that I cannot execute StartActivityForResult inside the service.
Do somebody have any suggestions for my problem whether a change in the architecture or a solution for the main problem?
#Laurent' : You have totaly right my service acts as an API adapter.
I will try to make the expected behaviour more clear.
I have an app that needs to recognize (real) objects which have QR codes on their top. This recognition action will be done several times by the user during the life of the app.
The user chooses to launch the recognition by clicking on a button (or otherwise but he knows that the recogntion will start). So no notification is needed.
The thing is he doesn't choose the way to do the recogniton. It is why, as you said, I implement an adapter.
The adapter chooses between :
Camera mobile or external device. The first is an activity coming from the Zxing library. The second one is a service that manages the external device. This service provides an interface to get back result.
One more thing, I need that my whole implementation (adapter and co) can be re-used by other apps that will also need to do recognition.
So my thought was to implement a service as an adapter to answer my two conditions (make transparent the choice for the user - and make the recognition available for other apps).
I hope you understand my problematic.
Given your architecture, your MyOwnService must act as an API adapter : it should provide a unified scanning API and address each external service specificities transparently.
Your expected behaviour is not clear enough to provide a solution that suits your needs but here are a few remarks that can be of some help.
Passive scanning:
Even if there are some workarounds : no activity should be launched from a service (not directly). Never. Bad. Services are background stuff, the most they will be permitted is to hint users with Notifications (this is point 2 of Justin excellent answer).
As a consequence there's nothing as a 'popup Activities' (and that's good!). If you need to continuously scan for barcodes, even when your activity is not run, then the only way to warn users is by using status bar notification.
Active scanning:
Inside your own activity you can bind to your wrapper service and make it start scanning for codebars. When it finds one it has to message your activity. Your Activity message handler has complete access to the UI to inform the user of your findings.
You selected Active Scanning in your edit, your problem is therefore to find a way for your service to actively notify your main application (the one that started the active scanning) that a new item has been scanned successfully.
You do NOT do this by starting a new activity (remember: this is bad) but you can bind to a service and/or use Messages between the wrapper service and the application.
I advice you take the time to read (and more time to comprehend) this android developer article on BoundServices and especially the part about Messengers.
A full example of Two Way Messaging between a Service and an Activity can be found in the following android examples : Service & Activity
Warning: designing robust, full blown AIDL-based services is a tough job.
Two ways you could solve this problem.
1) Have MyOwnService do a callback into MainActivity telling it to launch your ScanActivity.
- This is a better approach if MyOwnService's task is only going to be running while MainActivity is running and if the user would expect the ScanActivity to come up automatically.
2) Have MyOwnService create a notification that will let the user access the ScanActivity.
- This is a better approach if MyOwnService's task might be running longer than the life span of MainActivity. That way, you can let the user know, unobstrusively, that they might want to access the ScanActivity.
So finally I changed my architecture.
I make the choice to delete myOwnService and to create an intermediate activity that will be my API Adaptater.
This activity will have a dialog.theme to look like a dialog box indicating that a recognition is under execution.
If the recognition uses the external device this activity will stay at the foreground otherwise the camera activity will start (Being managed by the intermediate activity).
Thank to that I can manage my result from the intermediate activity and do not have an android strange architecture, keeping my business code for the recognition outside my main app.
Service was not the good choice.
Thanks a lot for you help and your time.
I have a Weather app with four Activities. The main/launcher activity is 'invisible' using...
android:theme="#android:style/Theme.Translucent.NoTitleBar"`
...and is simply used to do a few checks (whether this is a new install, whether a network connection is available etc) before firing off one of the other Activities. The other Activities are UI-oriented - two simply display weather data pulled from a website and the third to provide a location 'picker' so the user can choose which area to show the weather for.
However, all four activities make use of a WeatherHelper object which basically does everything from checking for available SD card storage to maintaining preferences and pulling/formatting website pages.
So, my question(s)...what is the best way to have one instance of WeatherHelper which can be used by multiple activities and where/how are best to create it in my case?
I've been an OO programmer for a lot of years but I'm very new to Android and the design concepts - I've read a lot on the Android Developers site over the past weeks but I've stalled trying to decide on this.
Any ideas gratefully received.
I would store shared information in you Application object. Subclass this and add any extra initialization and data there. You can get your application using getApplication() from your activity, which you can cast to your specialized version and access the shared data.
I would also avoid launching the special startup activity if possible and do the work in your Application's onCreate() override.
Well, your question has been answered, but it seems like it would be much simpler to instantiate your WeatherHelper object in the onCreate() of the Activity that has the launcher intent, and make the WeatherHelper static.