I need to estabilish a brief communication between a BLE master and a BLE peripherical device.
Until I have to use the mobile phone I have no problems, since I select the bluetooth device from Android, I can connect to it and then I can receive data simply writing them to HM-10.
BUT, this approach is battery expensive, since the BLE scanning is more battery expensive than the BLE advertising (right?). So I want that the mobile becames an advertisor and the HM-10 takes the ROLE of Slave.
BUT, I still don't understand if it is possible to connect to other devices: I tried AT+CONN and it always fails (AT+CONF). Is there any way to send brief data from the HM-10 to the advertisor, even without connecting?
Even my firmware looks slightly different from the readme! For example,AT+LN is present in the documentation but it appears to not exist. Does a better version of the firmware for this device exist, or, are sources available somewhere? I installed the HM-Soft V705 (lastest).
Thanks
UPDATE 1:
#ChrisStratton Ok, I have some intresting news: I was already following your idea (phone advertise sometimes, while HM-10 always scan and tries to connect to the service if it sees it, then HM-10 send some data, phone answer). I managed to make the phone visible from HM-10 (don't ask me how!). I am using the BLE Tool Android app to test everything. Now, the central problem now is that HM-10 won't connect to the android service even if the advertisor is connectable (see attached images).
I am sospicious that the AT+CO (that I discovered is a kind a replacement of AT+LN, but I am not sure) can help, but i don't know how.
Background
I have an idea for an app on vacation that needs to communicate to other phones with the same app. While on vacation those phones might not all have internet as roaming can be very expensive. The data is not a lot: like 500 kB max would suffice (in json).
Every phone has a bit of info that all the other phones would like to know, but if it helps the info can be stored on 1 phone (master phone from now on) and shared later to the other phones when back home over internet.
Phones
Android, iPhone and Windows Phone
We can't assume they have NFC, IR or zigbee. Just the hardware almost every phone has like bluetooth, camera, microphone etc.
My ideas
QR codes that changes, based on new info: If the first phone is scanned the second phones QR code has data from the 1st phone and itself and the 3rd phone has data from the 1st, 2nd and 3rd (itself) until it reaches that master phone that holds all data.
Data transmission trough sound that we can't hear (or we can). Con is that I don't know if something like this exists for mobile platforms and writing it is like a 3 year master thesis project.
http://nearbytes.com
https://applidium.com
https://developer.chirp.io/
Bluetooth. Can we connect like 8 devices? Would it work consistent (connecting even my headphones can be a hassle, what about 8 phones who try to connect simultaneously)
All of these ideas have big cons. Maybe I'm overlooking a better way.
I will add a bounty to the question for the best solution
An answer that explains it with a little bit of code reference (link is ok) is always better than just: "use bluetooth man"
TL;DR
The easiest (and most supported) way of getting multiple devices to connect to each other is using WiFi. Since your goal is to achieve data transfer with no internet, the most appealing solution would be to use a Peer-to-Peer network structure.
The two major smartphone OS's (Android and iOS) have API's and documentation on creating and transferring data over a Peer-to-Peer network.
Android WiFi P2P
Apple Multipeer Connectivity
These two also have a means to encrypt the data being transferred.
Windows doesn't seem to have an API to allow multiple peers connected, but their Proximity Class will work for one device at a time.
I can give a few outlines over the different options in each major OS:
Android
Android's WiFi P2P (peer-to-peer) API was created for transferring data without internet or another network.
From their documentation:
The Wi-Fi peer-to-peer (P2P) APIs allow applications to connect to nearby devices without needing to connect to a network or hotspot (Android's Wi-Fi P2P framework complies with the Wi-Fi Directâ„¢ certification program). Wi-Fi P2P allows your application to quickly find and interact with nearby devices, at a range beyond the capabilities of Bluetooth.
Google even has Documentation and training on this API.
iOS
Apple's Multipeer Connectivity.
Very similar to Android's P2P API, they claim:
The Multipeer Connectivity framework provides support for discovering services provided by nearby iOS devices using infrastructure Wi-Fi networks, peer-to-peer Wi-Fi, and Bluetooth personal area networks and subsequently communicating with those services by sending message-based data, streaming data, and resources (such as files).
Here is a decent looking tutorial on using Multipeer Connectivity.
--EDIT--
Another iOS way of doing this, which is a bit of a mis-utilization(?) of the tool, is by using GameKit.
However, I think that to get it to work for your purposes might result in a bit of a hack, since the "players" have to be using Game Center.
Windows
The only way (apparently) to connect phones in Windows Phone, is by using Proximity, however, that only gives you the option of connecting no more than two phones together.
They state:
Proximity is a great way to create a shared app experience between two instances of your app running on two different devices.
Those are options in each of the major mobile device OS's.
App usage could be something like:
Decide which device was going to be the "master", so that other devices can connect to it. It isn't required to know this before deploying the app, but there should be a way for the user to decide whether he is going to be a client (receiving data) or the server (pushing data).
Once it was decided between the group of devices which was going to be pushing data, that device would have to be registered as the server (in the Android P2P API, you can establish a "group owner"), and then start looking for peers by initializing the service.
Then, once the devices are connected to the master device, you can start pushing data. An additional bonus is that when using Android WiFi P2P, all communication is encrypted with WPA2, and with iOS, you can enable encryption using MCEnableEncryption (however they state that is slows down data transfer rate).
Now you would just have to pick one method to go with, and make sure that all the phones ran that OS. Because these three methods of connectivity won't work together.
All of the three methods listed are done programmatically, so there should be no strange or odd things that your user will have to do. Searching for other devices, connecting, and transferring data can all be done within your app.
More help can be provided if the question is narrowed down to specific problems, but this should be enough data to get you started.
Don't try QR or sound. I think it would be very painful to transmit 500kb of data.
Bluetooth seems like a good solution but maybe, as you already said, hard to configure.
What do you think about wifi?
At least every Android and iPhone device can create a mobile wifi hotspot. By using this, you can easily setup a environment where 8 devices are in the same LAN (without using the internet by any of your devices).
Now your "master phone" runs a simple server to synchronize data (just like an internet server would do). Every of the seven clients could receive the ip adress of you master by scanning a simple QR code or sending a short message and afterwards configure itself accordingly.
Have you checked Alljoyn?
As quoted:
"Developers can write applications for interoperability regardless of transport layer, manufacturer, and without the need for Internet access"
You can create a Wifi connection between your devices. Than after connection it creates local network between your devices. Inside this network you, of course, can interact between your devices using TCP/IP connection. It works both on Android and iOS. Simply lauch your app as server on the one device
EDIT
Note, you have to connect your devices using any network. It is possible to connect the devices by initializing your device as WiFi-router. It can be both Android and iOS. If it is possible, you can connect your devices to any wifi connection.
Than, launch your app as Server-socket, the others as clients.
for Android (java) server use this link:
https://docs.oracle.com/javase/tutorial/networking/sockets/clientServer.html
try (
ServerSocket serverSocket = new ServerSocket(portNumber);
Socket clientSocket = serverSocket.accept();
PrintWriter out =
new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(
new InputStreamReader(clientSocket.getInputStream()));
) {
for android device client:
try (
Socket kkSocket = new Socket(hostName, portNumber);
PrintWriter out = new PrintWriter(kkSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(
new InputStreamReader(kkSocket.getInputStream()));
)
The same idea is for iOS (Objective-C):
server
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/NetworkingTopics/Articles/UsingSocketsandSocketStreams.html#//apple_ref/doc/uid/CH73-SW8
and client:
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/NetworkingTopics/Articles/UsingSocketsandSocketStreams.html#//apple_ref/doc/uid/CH73-SW4
A better way could be use Ble.
It's easiers to connect the phones because you don't need user confirmation.
Seems like you can connect up to 20 devices Maximum number of peripherals on CoreBluetooth?.
To transfer 500KB should require few minutes (may be between 2 and 5).
You can track an Android device without Internet via GPS.
Connection without The Internet:
SMS
USSD
DTMF (very slow)
How to design a tracking device on USSD is mentioned at
M2M IoT Cookbook
How to develop a device based on Wireless Wide Area Network modules
You also can use the Android phone as a data logger and store under the Micro SD Card and read the card by:
Replacing the SD card to your PC
Streaming the data local by Bluetooth
Forwarding the data at home by Wi-Fi
Or Possibly:
Your app can use SMS API to transmit the DATA or other SOURCES.
I'm using the USB host abilities of Android to communicate with my hardware. My communication is done through a CP210X usb to serial chip, and I'm using the driver provided here. My device is a Motorola Xoom running Android 4.0.3.
Everything for the most part works fine. I'm able to send any amount of arbitrary data and the device on the other side of the CP210X chip gets it just fine. We use a request/response protocol, and rarely send any more than about 200 bytes in a second. The other (device) side is able to send me data, and everything works until the amount of data it sends me is longer than 20 bytes. If it sends me 20 or fewer bytes, I receive it normally. However, as soon as the amount of data that it sends me is 21 bytes or greater, the packet never gets to me. UsbDeviceConnection's bulkTransfer never reports anything different happening, as it's return value is always -1 on timeouts anyways. My bulkTransfer timeout is 100ms, which should be plenty of time to transfer such a small amount of data.
In an effort to see if it was an issue with my CP210X chip, I swapped it with an FTDI serial to usb, and experienced the same issues. That really makes me worry that the issue I'm facing might be in the usb drivers on my device. However, I also noticed the behavior when trying it out on a Samsung Galaxy S3, so that's got me very confused.
Is there anything I'm missing or doing wrong?
I'm asking because I've been facing that issue for weeks.
I need to develop an Android application that can be able to perform an Bluetooth Connection and send data to an Bluetooth Hardware.
Ok, so here's the point:
is it possible to perform a RFCOMM connection to an 'unknown' device?
I mean, is it possible to do this without having any information about the hardware code?
Because i'm only able to modify the AndroidDevice (cellphone) code, for SENDING purposes.
I want to send a byte and make sure it was received, but there's only a sending code.
Could we have some more details? Is the other device accessible by you, as in can the other device know information about the Android device? And what do you mean by a "sending code"?
The Android device can pick up any active Bluetooth device in its range, and know the name and address of those devices. So, if the Android device doesn't know anything about the Bluetooth device it wants to connect to, you can always sort through the list of devices in range, and get its hardware code through that.
See the documentation about Bluetooth, specifically the Finding Devices section:
http://developer.android.com/guide/topics/connectivity/bluetooth.html
I've done a fair amount of Bluetooth work with Android devices and Arduinos, and the Bluetooth library might be a bit of a pain to work with, but it is powerful.
With bluetooth the two devices have a UUID. If you a writing a program that runs on both devices you have them listen for that UUID. When they connect as a client or a server you have a dataInputStream and a dataOutputStream. Then you can push and pull bytes out of those.
How can I connect and disconnect to/from a headset bluetooth device programmatically?
The application should work for Android 2.1+
In other words: I have a headeset. I can pair, connect, disconnect to it using Settings/Wireless and Networks/Blutooth Settings.
But how can I do all those things (pair, connect, disconnect) from my program?
Please chech this link.
The android bluetooth example (already listed) has a bunch of issues (not the least of which is you need 2 android devices to get it to function).
Take a look at the example at http://luugiathuy.com/2011/02/android-java-bluetooth/ where he is using bt on the android device to hit a server (to do some robotics work).
Be aware of UUID issues (the way that BT decides what connection it can make is defined in the UUID), and check out http://www.avetana-gmbh.de/avetana-gmbh/produkte/doc/javax/bluetooth/UUID.html
Keep in mind that the 16 bits represented in the UUID (ie, 0x1101 for Serial Port) is misleading in that its really the least significant part and needs to be coded 0x00001101.