Android Development - 2D map with birdseye view - android

I am looking at creating a 2D birdseye view of a map where the user is basically working their way through it.
Is there a way that I can create the whole map in 1 go and store it somewhere, then simply only display a certain section of that map during game play?
e.g map size =100 x 100 but user can only ever see 5x5 (which is zoomed-in to use up 70% of the screen).

It might use too much memory if you store the whole 100x100 map as a bitmap/texture in memory and only display a certain part. I think you'll be more happy if you divide it into chunks of e.g. 5x5 and cache these chunks (only those that are visible and drawn right now). When the user moves and gets to a new chunk, you just draw the 5x5 tiles on a bitmap/texture and cache it for as long as it's visible (and unchanged).

Related

100 animated pics on an Android screen

Imagine emptying a pouch having 100 stamps on a small area. That would be the starting point for my screen. I should be able to scale individual stamps in and out, animate them on a swiping gesture, overlay them and animate them so they all come towards the place of a former stamp that just got swiped out of screen, filling that space in. Plus zooming and panning over the entire screen.
I have made canvas level zooming, panning, and drawing by hand, but I feel this is going to benefit a lot from some kind of library. What should I be looking for ? Math libraries, physics, game engines ?
I don't suppose making these into ImageViews and all together into a ViewGroup and trying to make it work from there would be a good idea.
Thanks

android block map generation through text file

(Just to be clear I'm asking for guideance not for someone to program this whole thing(unless they want to XD))
Hi, I'm currently trying to make a game for android in which you can build a map out of blocks(there are several types but we'll just use walls here).
The map is going to be 100x20 blocks, in which the players can put any of the blocks available inside in any order, and it's going to be stored as a text file "Let's call it "mapFile""(this part I've already solved) in which 0's would be nothing and 1's would be walls.
Now, the problem is that when you start playing the map, the game will have to load all the blocks to make the obstacles, but I want it to do it in a specific way (mainly to make the game go smoother and doesn't have to check 2000 blocks every update):
-make groups of blocks(lines, squares, rectangles) as 1 obstacle so there os only 1 collision detection in a large amount of blocks(the difficult part is to divide a complex shape in the best way)
-divide the map into 5x5 chunks so it doesn't have to check every obstacle in order to see if it should be drawn(it would just draw the chunk in which the player is in and the ones surrounding it)
The output from this should be a 4 levels array(or something similar):
Array[Ychunk][Xchunk][obstacle][x,y,xBlocks,yBlocks,type]
(Type is just the num of the block in the map(in this case it's 1 because it's the number for wall in my app)
For now the game has:
-An array with all the obstacles info (x,y,xBlocks,yBlocks,type)
-Only updates obstacles if they are a small distance from the player(still has to check them all)
-Only draws obstacles that are inside the window(also has to check them all)
Firstly, You don't need an array with all the map info, what you need is a 2D array of tiles. The tile object will contain all the info like the image, isSolid, etc.
Secondly, You will always have the player visible, so that acts as your anchor, Only show the tiles around your player and render that to the screen. Its makes no sense to render the tiles that will not be rendered on the screen e.g., If the player is at the center and the screen renders 5x5 tiles then +/- 2 tiles of the player tile. Same goes for checking if the tile is visible No, need to check all
Lastly, Again you don't need to check the player collision with all the obstacles, only need to check collision with the tile that the player is going to move on.
Hope it helps.

Android - is there a possibility to make infinite canvas?

Currently I am doing app allowing user to draw. Simple think, just extend Canvas class and most of the thing is done.
That was my initial thinking and idea. But as the canvas is rather small because this is only what user see on the screen there is not much possible space to draw. Going through documentation I found translate() method allowing me to move canvas. What I did find out is when I move it, there is some kind of blank space just as you would move piece of paper. I understand that this is totally normal, as I've said before - canvas is only "the screen".
My question is - is there a possibility to make something like infinite canvas so you can make a huge painting and move everything around?
Before this question I was thinking about two things how something like this can be done:
Move all objects on canvas simultaneously - bad idea, because if you have a lot of them then the speed of moving is very bad.
Do something similar as it is done in ListView when you move it (or better see on the screen) only views that are on the screen together with one before and one after are loaded to memory and rest is uploaded dynamically when needed. I think this is the best option to achieve this goal.
EDIT:
Question/answer given by Kai showed me that it is worth to edit my question to clarify some of the things.
Basic assumptions about what can be done by user:
User is given opportunity to draw only circles and rectangles with some (around 80%) having drawable (bitmap) on them on canvas.
I assume that on all screens there will be maximum 500-800 rectangles or circles.
First of all thinking about infinity I was thinking about quite big number of screens - at least 30 on zoom 1x in each side. I just need to give my users bigger freedom in what they are doing.
On this screen everything can be done as on normal - draw, scale (TouchListener, ScaleListener, DoubleTapListener). When talking about scaling, there is another thing that has to be concerned and connected with "infinity" of canvas. When user is zooming out then screens, or more precise objects on the invisible "neighbours" should appear with proper scaling as you would zoom out camera in real life.
The other thing that I've just realised is possibility of drawing at small zoom level - that is on two or three screens and then zooming in - I suppose it should cut and recalculate it as a smaller part.
I would like to support devices at least from API 10 and not only high-end.
The question about time is the most crucial. I want everything to be as smooth as possible, so user wouldn't know that new canvas is being created each time.
I think it really depends on a number of things:
The complexity of this "infinite canvas": how "infinite" would it really be, what operations can be done on it, etc
The devices that you want to support
The amount of time/resource you wish to spend on it
If there are really not that many objects/commands to be drawn and you don't plan to support older/lower end phones, then you can get away with just draw everything. The gfx system would do the checking and only draws what would actually be shown, so you only waste some time to send commands pass JNI boundary to the gfx system and the associated rect check.
If you decided that you needs a more efficient method, you can store all the gfx objects' positions in 4 tree structures, so when you search the upper-left/upper-right/lower-left/lower-right "window" that the screen should show, it'll fast to find the gfx objects that intersects this window and then only draw those.
[Edit]
First of all thinking about infinity I was thinking about quite big
number of screens - at least 30 on zoom 1x in each side. I just need
to give my users bigger freedom in what they are doing.
If you just story the relative position of canvas objects, there's practically no limit on the size of your canvas, but may have to provide a button to take users to some point on canvas that they are familiar lest they got themselves lost.
When talking about scaling, there is another thing that has to be
concerned and connected with "infinity" of canvas. When user is
zooming out then screens, or more precise objects on the invisible
"neighbours" should appear with proper scaling as you would zoom out
camera in real life.
If you store canvas objects in a "virtual space", and using a "translation factor" to translate objects from virtual space to screen space then things like zoom-in/out would be quite trivial, something like
screenObj.left=obj.left*transFactor-offsetX;
screenObj.right=obj.right*transFactor-offsetX;
screenObj.top=obj.top*transFactor-offsetY;
screenObj.bottom=obj.bottom*transFactor-offsetY;
//draw screenObj
As an example here's a screenshot of my movie-booking app:
The lower window shows all the seats of a movie theater, and the upper window is a zoomed-in view of the same theater. They are implemented as two instances of the same SurfaceView class, besides user input handling, the only difference is that the upper one applies the above-mentioned "translation factor".
I assume that on all screens there will be maximum 500-800 rectangles
or circles.
It is actually not too bad. Reading your edit, I think a potentially bigger issue would be if an user adds a large number of objects to the same portion of your canvas. Then it wouldn't matter if you only draw the objects that are actually shown and nothing else - you'd still get bad FPS since the GPU's fill-rate is saturated.
So there are actually two potential sources of issues:
Too many draw commands (if drawing everything on canvas instead of just drawing visible ones)
Too many large objects in the same part of the screen (eats up GPU fill-rate)
The two issues requires very different strategy (1st one using tree structures to sort objects, 2nd one using dynamically generated Bitmap cache). Since how users use your app are likely to different than how you envisioned it to be, I would strongly recommend implementing the functions without the above optimizations, try to get as many people as possible to do testing, and then apply optimizations to each of the bottlenecks you encounter until the satisfactory performance is achieved.
[Edit 2]
Actually with just 500~800 objects, you can just calculate the position of all the objects, and then check to see if they are visible on screen, you don't even really need to use some fancy data structures like a tree with its own overheads.

How to draw a map with a large database in android?

I'm trying to draw a map ( but not using google map) and make an animation with it (like zoom, scroll rotate, transition....) . It works very smooth with the small database, but when i test with the large database (about 15000 points and lines), it take more than minutes to start a small activity (like zoom)...
In the code, i draw all the map into the canvas type, then use matrixs and thread to make animation.
I want to ask if there is a other way to make it faster.
Thank you.
While user starts zooming, convert your map to bitmap and zoom one image instead of thousands of objects. Also it's better to don't draw invisible (for user) objects

Android scrolling background of bitmap tiles

I'm tried to determine the "best" way to scroll a background comprised of tiled Bitmaps on an Android SurfaceView. I've actually been successful in doing so, but wanted to determine if there is a more efficient technique, or if my technique might not work on all Android phones.
Basically, I create a new, mutable Bitmap to be slightly larger than the dimensions of my SurfaceView. Specifically, my Bitmap accomodates an extra line of tiles on the top, bottom, left, and right. I create a canvas around my new bitmap, and draw my bitmap tiles to it. Then, I can scroll up to a tile in any direction simply by drawing a "Surfaceview-sized" subset of my background Bitmap to the SurfaceHolder's canvas.
My questions are:
Is there a better bit blit technique than drawing a background bitmap to the canvas of my SurfaceHolder?
What is the best course of action when I scroll to the edge of my background bitmap, and wish to shift the map one tile length?
As I see it, my options are to:
a. Redraw all the tiles in my background individually, shifted a tile length in one direction. (This strikes me as being inefficient, as it would entail many small Bitmap draws).
b. Simply make the background bitmap so large that it will encompass the entire scrolling world. (This could require an extremely large bitmap, yet it would only need to be created once.)
c. Copy the background bitmap, draw it onto itself but shifted a tile length in the direction we are scrolling, and draw the newly revealed row or column of tiles with a few individual bitmap draws. (Here I am making the assumption that one large bitmap draw is more efficient than multiple small ones covering the same expanse.)
Thank you for reading all this, and I would be most grateful for any advice.
I originally used a similar technique to you in my 'Box Fox' platformer game and RTS, but found it caused quite noticeable delays if you scroll enough that the bitmap needs to be redrawn.
My current method these games is similar to your Option C. I draw my tiled map layers onto a grid of big bitmaps (about 7x7) taking up an area larger than the screen. When the user scrolls onto the edge of this grid, I shift all the bitmaps in the grid over (moving the end bitmaps to the front), change the offset of grid, and then just redraw the new edge.
I'm not quite sure which is faster with software rendering (your Option C or my current method). I think my method maybe faster if you ever change to OpenGL rendering as you wouldn't have to upload as much texture data to the graphics card as the user scrolls.
I wouldn't recommend Option A because, as you suggest, the hundreds small bitmap draws for a tiled map kills performance, and it gets pretty bad with larger screens. Option B may not even be possible with many devices, as it's quite easy to get a 'bitmap size exceeds VM budget' error as the heap space limit is set quite low on many phones.
Also if you don't need transparency on your map/background try to use RGB_565 bitmaps, as it's quite a lot faster to draw in software, and uses up less memory.
By the way, I get capped at 60fps on both my phone and 10" tablet in my RTS with the method above, rendered in software, and can scroll across the map smoothly. So you can definitely get some decent speed out of the android software renderer. I have a 2D OpenGL wrapper built for my game but haven't yet needed to switch to it.
My solution in a mapping app relies on a 2 level cache, first tile objects are created with a bitmap and a position, these are either stored on disk or in a Vector (synching is important for me, multithreaded HTTP comms all over the place).
When I need to draw the background I detect the visible area and get a list of all the tiles I need (this is heavily optimised as it gets called so often) then either pull the tiles from memory or load from disk. I get very reasonable performance even on slightly older phones and nice smooth scrolling with no hiccups.
As a caveat, I allow tiles not to be ready and swap them with a loading image, I don't know if this would work for you, but if you have all the tiles loaded in the APK you should be fine.
I think one efficent way to do this would be to use canvas.translate.
On the first drawing the entire canvas would have to be filled with tiles. New android phones can do this easily and quickly.
When the backround is scrolled I would use canvas.translate(scrollX, scrollY), then I would draw individualy one by one tile to fill the gaps, BUT, I would use
canvas.drawBitmap(tileImage[i], fromRect, toRect, null) which would only draw the parts of the tiles that are needed to be shown, by setting fromRect and toRect to correspond to scrollX and scrollY.
So all would be done by mathematics and no new bitmaps would be created for the background - save some memory.
EDIT:
However there is a problem using canvas.translate with surfaceView, because it is double buffered and canvas.translate will translate only one buffer but not the second one at the same time, so this alternating of buffers would have to be taken into account when depending on surfaceView to preserve the drawn image.
I am using your original method to draw a perspective scrolling background. I came up with this idea entirely by accident a few days ago while messing around with an easy technique to do a perspective scrolling star field simulation. The app can be found here: Aurora2D.apk
Just tilt your device or shake it to make the background scroll (excuse the 2 bouncing sprites - they are there to help me with an efficient method to display trails). Please let me know if you find a better way to do it, since I have coded several different methods over the years and this one seems to be superior. Simply mail me if you want to compare code.

Categories

Resources