Android scrolling background of bitmap tiles - android

I'm tried to determine the "best" way to scroll a background comprised of tiled Bitmaps on an Android SurfaceView. I've actually been successful in doing so, but wanted to determine if there is a more efficient technique, or if my technique might not work on all Android phones.
Basically, I create a new, mutable Bitmap to be slightly larger than the dimensions of my SurfaceView. Specifically, my Bitmap accomodates an extra line of tiles on the top, bottom, left, and right. I create a canvas around my new bitmap, and draw my bitmap tiles to it. Then, I can scroll up to a tile in any direction simply by drawing a "Surfaceview-sized" subset of my background Bitmap to the SurfaceHolder's canvas.
My questions are:
Is there a better bit blit technique than drawing a background bitmap to the canvas of my SurfaceHolder?
What is the best course of action when I scroll to the edge of my background bitmap, and wish to shift the map one tile length?
As I see it, my options are to:
a. Redraw all the tiles in my background individually, shifted a tile length in one direction. (This strikes me as being inefficient, as it would entail many small Bitmap draws).
b. Simply make the background bitmap so large that it will encompass the entire scrolling world. (This could require an extremely large bitmap, yet it would only need to be created once.)
c. Copy the background bitmap, draw it onto itself but shifted a tile length in the direction we are scrolling, and draw the newly revealed row or column of tiles with a few individual bitmap draws. (Here I am making the assumption that one large bitmap draw is more efficient than multiple small ones covering the same expanse.)
Thank you for reading all this, and I would be most grateful for any advice.

I originally used a similar technique to you in my 'Box Fox' platformer game and RTS, but found it caused quite noticeable delays if you scroll enough that the bitmap needs to be redrawn.
My current method these games is similar to your Option C. I draw my tiled map layers onto a grid of big bitmaps (about 7x7) taking up an area larger than the screen. When the user scrolls onto the edge of this grid, I shift all the bitmaps in the grid over (moving the end bitmaps to the front), change the offset of grid, and then just redraw the new edge.
I'm not quite sure which is faster with software rendering (your Option C or my current method). I think my method maybe faster if you ever change to OpenGL rendering as you wouldn't have to upload as much texture data to the graphics card as the user scrolls.
I wouldn't recommend Option A because, as you suggest, the hundreds small bitmap draws for a tiled map kills performance, and it gets pretty bad with larger screens. Option B may not even be possible with many devices, as it's quite easy to get a 'bitmap size exceeds VM budget' error as the heap space limit is set quite low on many phones.
Also if you don't need transparency on your map/background try to use RGB_565 bitmaps, as it's quite a lot faster to draw in software, and uses up less memory.
By the way, I get capped at 60fps on both my phone and 10" tablet in my RTS with the method above, rendered in software, and can scroll across the map smoothly. So you can definitely get some decent speed out of the android software renderer. I have a 2D OpenGL wrapper built for my game but haven't yet needed to switch to it.

My solution in a mapping app relies on a 2 level cache, first tile objects are created with a bitmap and a position, these are either stored on disk or in a Vector (synching is important for me, multithreaded HTTP comms all over the place).
When I need to draw the background I detect the visible area and get a list of all the tiles I need (this is heavily optimised as it gets called so often) then either pull the tiles from memory or load from disk. I get very reasonable performance even on slightly older phones and nice smooth scrolling with no hiccups.
As a caveat, I allow tiles not to be ready and swap them with a loading image, I don't know if this would work for you, but if you have all the tiles loaded in the APK you should be fine.

I think one efficent way to do this would be to use canvas.translate.
On the first drawing the entire canvas would have to be filled with tiles. New android phones can do this easily and quickly.
When the backround is scrolled I would use canvas.translate(scrollX, scrollY), then I would draw individualy one by one tile to fill the gaps, BUT, I would use
canvas.drawBitmap(tileImage[i], fromRect, toRect, null) which would only draw the parts of the tiles that are needed to be shown, by setting fromRect and toRect to correspond to scrollX and scrollY.
So all would be done by mathematics and no new bitmaps would be created for the background - save some memory.
EDIT:
However there is a problem using canvas.translate with surfaceView, because it is double buffered and canvas.translate will translate only one buffer but not the second one at the same time, so this alternating of buffers would have to be taken into account when depending on surfaceView to preserve the drawn image.

I am using your original method to draw a perspective scrolling background. I came up with this idea entirely by accident a few days ago while messing around with an easy technique to do a perspective scrolling star field simulation. The app can be found here: Aurora2D.apk
Just tilt your device or shake it to make the background scroll (excuse the 2 bouncing sprites - they are there to help me with an efficient method to display trails). Please let me know if you find a better way to do it, since I have coded several different methods over the years and this one seems to be superior. Simply mail me if you want to compare code.

Related

Finger drawing application with unlimited scroll

I want to make finger-draw app with vertical scroll and possibly unlimited space to draw. Scroll can be locked/unlocked.
I know 2 ways to do that:
Make a bitmap with given width and height, draw points/lines in onTouchEvent(MotionEvent) via Canvas(Bitmap) and draw that bitmap in onDraw(Canvas).
Save touch points to array and draw them directly in onDraw(Canvas).
But both ways have disadvantages:
OutOfMemoryException with big bitmap.
Very slow with numerous points while scrolling and OOM possible too.
I have an idea to use window and read/write regions of bitmap on demand. So there is a problem: how to write/append bitmap to another bitmap?
I cant find an appropriate way to append 200x200px bitmap to 8000x8000px bitmap for example. Is there a way to do that without native libs?
Or am I totally wrong and there is an easier method to do what I need to?
What about using a grid of small bitmaps, without appending them to a larger bitmap at all? When one of your bitmaps goes out of the screen you save it to the disk and destroy it or recycle it, a bit like how GridView recycles cells (it reuses the same 10 cells or so to display a potentially infinite grid of cells). Saving the whole drawing would just mean saving all bitmaps to the disk.
The main concern with this approach is the time it takes to save/load chunks from disk while the user scrolls through the view, which may cause the app to freeze for a short time, but there are ways to make it smooth (for example by preloading bitmaps in a background thread).
Storing touch points in a list is also completely possible, there are many ways to speed up the drawing part, for example by caching what's on the screen and drawing only what's missing when the user scrolls. Which one is best depends on what you will draw on your view.

scaling images in libgdx only once

In my android game, I am using images of fixed resolution lets say 256x256. Now for different device screens, I am rendering them by calculating their width and height as appropriate for that device.
Assume that on galaxy note2 I calculated width=128 and height=128... similarly for different devices, width and height will vary.
This is how I created texture..
....
imageTexture = new Texture(...);
....
in render()..
....
spriteBatch.draw(imageTexture,x,y,width,height);
....
So, every time when I call draw() method, does libgdx/opengl scale image from 256x256 to 128x128, which I think, yes!
Is there any way to tell opengl/libgdx to calculate all scaling only once ?
I have no idea how images were rendered? loaded into memory? scaled etc ?
How does Sprite in libgdx work? I tried understanding the code of Sprite and looks to me like they are also getting image width and height and then scale it every time, even though they have setScale() method.
First rule of optimizing: get some numbers. Premature optimization is the root of many problems. That said, there are still some good rules of thumb to know.
The texture data will be uploaded by libgdx/OpenGL to the GPU when you invoke new Texture. When you actually draw the texture with spriteBatch.draw instructions are uploaded to the GPU by OpenGL that tell the hardware to use your existing texture and to fit it to the bounds. The draw call just uploads coordinates (the corners of the box that defines the Sprite) and a pointer to the texture. The actual texture data is not uploaded.
So, in practice your image is "scaled" on every frame. However, this is not that bad, as this is exactly what GPUs are designed to do very, very well. You only really need to worry about uploading so many textures that the GPU has trouble keeping track of them all, you do not need to worry much about scaling the textures beforehand.
The costs of scaling and transforming the four corners of the sprite are relatively trivial next to the costs of sending the data to the GPU and the cost of refreshing the screen, so they probably are not worth worrying about too much. The "batch" in SpriteBatch is all about "batching up" (or gathering together) a lot of coordinates to send up to the GPU at once, as roughly, each call out to the GPU can be expensive. So, its always good to do as much work within a single batch's begin/end as you can.
Again, though, modern machines are stupidly fast, and you should be able to do whatever is easiest to get your app running first. Then once you have something working correctly, you can figure out which parts are actually slow and fix those. The parts that are "inefficient" but are not actually measurably impacting your application can be left alone.

Android - is there a possibility to make infinite canvas?

Currently I am doing app allowing user to draw. Simple think, just extend Canvas class and most of the thing is done.
That was my initial thinking and idea. But as the canvas is rather small because this is only what user see on the screen there is not much possible space to draw. Going through documentation I found translate() method allowing me to move canvas. What I did find out is when I move it, there is some kind of blank space just as you would move piece of paper. I understand that this is totally normal, as I've said before - canvas is only "the screen".
My question is - is there a possibility to make something like infinite canvas so you can make a huge painting and move everything around?
Before this question I was thinking about two things how something like this can be done:
Move all objects on canvas simultaneously - bad idea, because if you have a lot of them then the speed of moving is very bad.
Do something similar as it is done in ListView when you move it (or better see on the screen) only views that are on the screen together with one before and one after are loaded to memory and rest is uploaded dynamically when needed. I think this is the best option to achieve this goal.
EDIT:
Question/answer given by Kai showed me that it is worth to edit my question to clarify some of the things.
Basic assumptions about what can be done by user:
User is given opportunity to draw only circles and rectangles with some (around 80%) having drawable (bitmap) on them on canvas.
I assume that on all screens there will be maximum 500-800 rectangles or circles.
First of all thinking about infinity I was thinking about quite big number of screens - at least 30 on zoom 1x in each side. I just need to give my users bigger freedom in what they are doing.
On this screen everything can be done as on normal - draw, scale (TouchListener, ScaleListener, DoubleTapListener). When talking about scaling, there is another thing that has to be concerned and connected with "infinity" of canvas. When user is zooming out then screens, or more precise objects on the invisible "neighbours" should appear with proper scaling as you would zoom out camera in real life.
The other thing that I've just realised is possibility of drawing at small zoom level - that is on two or three screens and then zooming in - I suppose it should cut and recalculate it as a smaller part.
I would like to support devices at least from API 10 and not only high-end.
The question about time is the most crucial. I want everything to be as smooth as possible, so user wouldn't know that new canvas is being created each time.
I think it really depends on a number of things:
The complexity of this "infinite canvas": how "infinite" would it really be, what operations can be done on it, etc
The devices that you want to support
The amount of time/resource you wish to spend on it
If there are really not that many objects/commands to be drawn and you don't plan to support older/lower end phones, then you can get away with just draw everything. The gfx system would do the checking and only draws what would actually be shown, so you only waste some time to send commands pass JNI boundary to the gfx system and the associated rect check.
If you decided that you needs a more efficient method, you can store all the gfx objects' positions in 4 tree structures, so when you search the upper-left/upper-right/lower-left/lower-right "window" that the screen should show, it'll fast to find the gfx objects that intersects this window and then only draw those.
[Edit]
First of all thinking about infinity I was thinking about quite big
number of screens - at least 30 on zoom 1x in each side. I just need
to give my users bigger freedom in what they are doing.
If you just story the relative position of canvas objects, there's practically no limit on the size of your canvas, but may have to provide a button to take users to some point on canvas that they are familiar lest they got themselves lost.
When talking about scaling, there is another thing that has to be
concerned and connected with "infinity" of canvas. When user is
zooming out then screens, or more precise objects on the invisible
"neighbours" should appear with proper scaling as you would zoom out
camera in real life.
If you store canvas objects in a "virtual space", and using a "translation factor" to translate objects from virtual space to screen space then things like zoom-in/out would be quite trivial, something like
screenObj.left=obj.left*transFactor-offsetX;
screenObj.right=obj.right*transFactor-offsetX;
screenObj.top=obj.top*transFactor-offsetY;
screenObj.bottom=obj.bottom*transFactor-offsetY;
//draw screenObj
As an example here's a screenshot of my movie-booking app:
The lower window shows all the seats of a movie theater, and the upper window is a zoomed-in view of the same theater. They are implemented as two instances of the same SurfaceView class, besides user input handling, the only difference is that the upper one applies the above-mentioned "translation factor".
I assume that on all screens there will be maximum 500-800 rectangles
or circles.
It is actually not too bad. Reading your edit, I think a potentially bigger issue would be if an user adds a large number of objects to the same portion of your canvas. Then it wouldn't matter if you only draw the objects that are actually shown and nothing else - you'd still get bad FPS since the GPU's fill-rate is saturated.
So there are actually two potential sources of issues:
Too many draw commands (if drawing everything on canvas instead of just drawing visible ones)
Too many large objects in the same part of the screen (eats up GPU fill-rate)
The two issues requires very different strategy (1st one using tree structures to sort objects, 2nd one using dynamically generated Bitmap cache). Since how users use your app are likely to different than how you envisioned it to be, I would strongly recommend implementing the functions without the above optimizations, try to get as many people as possible to do testing, and then apply optimizations to each of the bottlenecks you encounter until the satisfactory performance is achieved.
[Edit 2]
Actually with just 500~800 objects, you can just calculate the position of all the objects, and then check to see if they are visible on screen, you don't even really need to use some fancy data structures like a tree with its own overheads.

Android Canvas Off Screen Drawing Performance

I'm developing an Android game using Canvas element. I have many graphic elements (sprites) drawn on a large game map. These elements are drawn by standard graphics functions like drawLine, drawPath, drawArc etc.
It's not hard to test if they are in screen or not. So, if they are out of the screen, i may skip their drawing routines completely. But even this has a CPU cost. I wonder if Android Graphics Library can do this faster than I can?
In short, should I try to draw everything even if they are completely out of the screen coordinates believing Android Graphics Library would take care of them and not spend much CPU trying to draw them or should I check their drawing area rectangle myself and if they are completely out of screen, skip the drawing routines? Which is the proper way? Which one is supposed to be faster?
p.s: I'm targeting Android v2.1 and above.
From a not-entirely-scientific test I did drawing Bitmaps tiled across a greater area than the screen, I found that checking beforehand if the Bitmap was onscreen doesn't seem to make a considerable different.
In one test I set a Rect to the screen size and set another Rect to the position of the Bitmap and checked Rect.intersects() before drawing. In the other test I just drew the Bitmap. After 300-ish draws there wasn't a visible trend - some went one way, others went another. I tried the 300-draw test every frame, and the variation from frame to frame was much greater than difference between checked and unchecked drawing.
From that I think it's safe to say Android checks bounds in its native code, or you'd expect a considerable difference. I'd share the code of my test, but I think it makes sense for you to do your own test in the context of your situation. It's possible points behave differently than Bitmaps, or some other feature of your paint or canvas changes things.
Hope that help you (or another to stumble across this thread as I did with the same question).

android view or surfaceView, which should i use?

Ive been trying to make a scrollable/zoomable app and everything has gone great except for drawing bitmaps. It is a very large image (6656 by 4096) that i have split into tiles. There is a rectangle array that the bitmaps are drawn to, and it detects what rectangle is in the top left corner so it can draw the bitmaps that will cover the user's viewable screen. My problem is this all lags when the app has to load the bitmaps into memory; Once they are loaded it isnt an issue. I started with 512 by 512 tiles, then went down to 128 by 128. although it helped, there still is some noticeable lag. I have been looking into surfaceView and wanted your opinions if i should stick with View, or use surfaceView to solve my lag.
If you derive your own SurfaceView you have several advantages.
Mainly because you can have all drawing logic in a seperate thread. This means that the ui won't wait for you (I'm assuming the lag is because the ui-thread is being blocked?).
SurfaceView's are also faster in nature.
I also find this overview on developer.android.com to be a good reference to choose drawing method.

Categories

Resources