I tried to adjust saturation using below code, but it is not working properly. I have used saturation value range between 0 to 1.
//deg value range is from 0 to 1.
public static Bitmap adjustSaturation(Bitmap o, float deg)
{
Bitmap srca = o;
Bitmap bitmap = srca.copy(Bitmap.Config.ARGB_8888, true);
for(int x = 0;x < bitmap.getWidth();x++)
for(int y = 0;y < bitmap.getHeight();y++){
int newPixel = saturationChange(bitmap.getPixel(x,y),deg);
bitmap.setPixel(x, y, newPixel);
}
return bitmap;
}
private static int saturationChange(int startpixel,float deg){
float[] hsv = new float[3]; //array to store HSV values
Color.colorToHSV(startpixel,hsv); //get original HSV values of pixel
hsv[1]=hsv[1]+deg; //add the shift to the HUE of HSV array
hsv[1]=hsv[1]%1; //confines hue to values:[0,360]
return Color.HSVToColor(Color.alpha(startpixel),hsv);
}
Please suggest a solution to this problem.
Related
I need a way to adjust hue/sat of a Bitmap. So far I found this
public static Bitmap colorize(Bitmap src, float hue, float saturationDelta, float valueDelta) {
Bitmap b = src.copy(Bitmap.Config.ARGB_8888, true);
for (int x = 0; x < b.getWidth(); x++) {
for (int y = 0; y < b.getHeight(); y++) {
int color = b.getPixel(x, y);
float[] hsv = new float[3];
Color.colorToHSV(color, hsv);
hsv[0] = hue;
hsv[1] += saturationDelta;
hsv[2] += valueDelta;
int newColor = Color.HSVToColor(Color.alpha(color), hsv);
b.setPixel(x, y, newColor);
}
}
return b;
}
But it takes like 10 seconds to work on a 400x500 bitmap. Are there any faster ways?
Thanks! :)
The link I've posted above should help with hue adjustment. In general, the reason the above code is so slow is because you're calling getPixel() and setPixel() for EVERY PIXEL in the image. You should instead use the getPixels() and setPixels() methods to get all of the pixels as an array, loop over that array and do the modification, then set the modified array back to the bitmap all at once. You'll notice an enormous speed improvement.
I am doing histogram equalization on an image. I first get the RGB image and convert it to YUV. I run the histogram equalization algorithm on Y' of YUV and then convert back to RGB. Is it me, or does the image look weird? I am doing this correctly? this image is pretty bright, other images are a little red.
Here are the before/after images:
The algorithm (the commented values are values that I used previously for conversion. Both yield pretty much the same results) :
public static void createContrast(Bitmap src) {
int width = src.getWidth();
int height = src.getHeight();
Bitmap processedImage = Bitmap.createBitmap(width, height, src.getConfig());
int A = 0,R,G,B;
int pixel;
float[][] Y = new float[width][height];
float[][] U = new float[width][height];
float[][] V = new float [width][height];
int [] histogram = new int[256];
Arrays.fill(histogram, 0);
int [] cdf = new int[256];
Arrays.fill(cdf, 0);
float min = 257;
float max = 0;
for(int x = 0; x < width; ++x) {
for(int y = 0; y < height; ++y) {
pixel = src.getPixel(x, y);
//Log.i("TEST","("+x+","+y+")");
A = Color.alpha(pixel);
R = Color.red(pixel);
G = Color.green(pixel);
B = Color.blue(pixel);
/*Log.i("TESTEST","R: "+R);
Log.i("TESTEST","G: "+G);
Log.i("TESTEST","B: "+B);*/
// convert to YUV
/*Y[x][y] = 0.299f * R + 0.587f * G + 0.114f * B;
U[x][y] = 0.492f * (B-Y[x][y]);
V[x][y] = 0.877f * (R-Y[x][y]);*/
Y[x][y] = 0.299f * R + 0.587f * G + 0.114f * B;
U[x][y] = 0.565f * (B-Y[x][y]);
V[x][y] = 0.713f * (R-Y[x][y]);
// create a histogram
histogram[(int) Y[x][y]]+=1;
// get min and max values
if (Y[x][y] < min){
min = Y[x][y];
}
if (Y[x][y] > max){
max = Y[x][y];
}
}
}
cdf[0] = histogram[0];
for (int i=1;i<=255;i++){
cdf[i] = cdf[i-1] + histogram[i];
//Log.i("TESTEST","cdf of: "+i+" = "+cdf[i]);
}
float minCDF = cdf[(int)min];
float denominator = width*height - minCDF;
//Log.i("TEST","Histeq Histeq Histeq Histeq Histeq Histeq");
for(int x = 0; x < width; ++x) {
for(int y = 0; y < height; ++y) {
//Log.i("TEST","("+x+","+y+")");
pixel = src.getPixel(x, y);
A = Color.alpha(pixel);
Y[x][y] = ((cdf[ (int) Y[x][y]] - minCDF)/(denominator)) * 255;
/*R = minMaxCalc(Y[x][y] + 1.140f * V[x][y]);
G = minMaxCalc (Y[x][y] - 0.395f * U[x][y] - 0.581f * V[x][y]);
B = minMaxCalc (Y[x][y] + 2.032f * U[x][y]);*/
R = minMaxCalc(Y[x][y] + 1.140f * V[x][y]);
G = minMaxCalc (Y[x][y] - 0.344f * U[x][y] - 0.714f * V[x][y]);
B = minMaxCalc (Y[x][y] + 1.77f * U[x][y]);
//Log.i("TESTEST","A: "+A);
/*Log.i("TESTEST","R: "+R);
Log.i("TESTEST","G: "+G);
Log.i("TESTEST","B: "+B);*/
processedImage.setPixel(x, y, Color.argb(A, R, G, B));
}
}
}
My next step is to graph the histograms before and after. I just want to get an opinion here.
The question is a little bit old, but let me answer.
The reason is the way histogram equalization works. The algorithm tries to use all of the 0-255 range instead of given image's range.
So if you give it a dark image, it will change relatively brighter pixels to white colors. And relatively darker colors to black colors.
If you give it a bright image, for the same reason it will get darkened.
I'm trying to make an app that will take two pictures you specify via editText, compare the colors of each pixel on both images and create a new picture (bitmap) (that you can save to the sd card) containing the differences between the two original pictures.
I'm having a problem with creating this new bitmap. How can I achieve my goal? I don't really know how to do this, do I create the new bitmap first and then write into it, or do I get the differences first and then draw a bitmap from that? The pictures will be approx. 300x300 px.
this code is just out of my head and untested but it should get you on the right track.
final int w1 = b1.getWidth();
final int w2 = b2.getWidth();
final int h1 = b1.getHeight();
final int h2 = b2.getHeight();
final int w = Math.max(w1, w2);
final int h = Math.max(h2, h2);
Bitmap compare = Bitmap.createBitmap(w, h, Config.ARGB_8888);
int color1, color2, a, r, g, b;
for (int x = 0; x < w; x++) {
for (int y = 0; y < h; y++) {
if (x < w1 && y < h1) {
color1 = b1.getPixel(x, y);
} else {
color1 = Color.BLACK;
}
if (x < w2 && y < h2) {
color2 = b2.getPixel(x, y);
} else {
color2 = Color.BLACK;
}
a = Math.abs(Color.alpha(color1) - Color.alpha(color2));
r = Math.abs(Color.red(color1) - Color.red(color2));
g = Math.abs(Color.green(color1) - Color.green(color2));
b = Math.abs(Color.blue(color1) - Color.blue(color1));
compare.setPixel(x, y, Color.argb(a, r, g, b));
}
}
b1.recycle();
b2.recycle();
I would create the bitmap first and compute the differences between each pixel, but you're welcome to compute the differences first and then use Bitmap.copyPixels, but I think it's easier to understand the first way. Here is an example:
// Load the two bitmaps
Bitmap input1 = BitmapFactory.decodeFile(/*first input filename*/);
Bitmap input2 = BitmapFactory.decodeFile(/*second input filename*/);
// Create a new bitmap. Note you'll need to handle the case when the two input
// bitmaps are not the same size. For this example I'm assuming both are the
// same size
Bitmap differenceBitmap = Bitmap.createBitmap(input1.getWidth(),
input1.getHeight(), Bitmap.Config.ARGB_8888);
// Iterate through each pixel in the difference bitmap
for(int x = 0; x < /*bitmap width*/; x++)
{
for(int y = 0; y < /*bitmap height*/; y++)
{
int color1 = input1.getPixel(x, y);
int color2 = input2.getPixel(x, y);
int difference = // Compute the difference between pixels here
// Set the color of the pixel in the difference bitmap
differenceBitmap.setPixel(x, y, difference);
}
}
I'm looking to change the hue of my background image (PNG) programmatically. How can this be done on Android?
I tested the accepted answer, unfortunately it returns a wrong result. I found and modified this code from here which works fine:
// hue-range: [0, 360] -> Default = 0
public static Bitmap hue(Bitmap bitmap, float hue) {
Bitmap newBitmap = bitmap.copy(bitmap.getConfig(), true);
final int width = newBitmap.getWidth();
final int height = newBitmap.getHeight();
float [] hsv = new float[3];
for(int y = 0; y < height; y++){
for(int x = 0; x < width; x++){
int pixel = newBitmap.getPixel(x,y);
Color.colorToHSV(pixel,hsv);
hsv[0] = hue;
newBitmap.setPixel(x,y,Color.HSVToColor(Color.alpha(pixel),hsv));
}
}
bitmap.recycle();
bitmap = null;
return newBitmap;
}
The linked post has some good ideas, but the matrix math used for ColorFilter may be (a) complex overkill, and (b) introduce perceptible shifts in the resulting colors.
Modifying the solution given by janin here - https://stackoverflow.com/a/6222023/1303595 - I've based this version on Photoshop's 'Color' blend mode. It seems to avoid the image-darkening caused by PorterDuff.Mode.Multiply, and works very well for color-tinting desaturated/artificial-Black & White images without losing much contrast.
/*
* Going for perceptual intent, rather than strict hue-only change.
* This variant based on Photoshop's 'Color' blending mode should look
* better for tinting greyscale images and applying an all-over color
* without tweaking the contrast (much)
* Final color = Target.Hue, Target.Saturation, Source.Luma
* Drawback is that the back-and-forth color conversion introduces some
* error each time.
*/
public void changeHue (Bitmap bitmap, int hue, int width, int height) {
if (bitmap == null) { return; }
if ((hue < 0) || (hue > 360)) { return; }
int size = width * height;
int[] all_pixels = new int [size];
int top = 0;
int left = 0;
int offset = 0;
int stride = width;
bitmap.getPixels (all_pixels, offset, stride, top, left, width, height);
int pixel = 0;
int alpha = 0;
float[] hsv = new float[3];
for (int i=0; i < size; i++) {
pixel = all_pixels [i];
alpha = Color.alpha (pixel);
Color.colorToHSV (pixel, hsv);
// You could specify target color including Saturation for
// more precise results
hsv [0] = hue;
hsv [1] = 1.0f;
all_pixels [i] = Color.HSVToColor (alpha, hsv);
}
bitmap.setPixels (all_pixels, offset, stride, top, left, width, height);
}
If you wrap your Bitmap in an ImageView there is a very simple way:
ImageView circle = new ImageView(this);
circle.setImageBitmap(yourBitmap);
circle.setColorFilter(Color.RED);
My guess is this will be faster than modifying each pixel individually.
I have Black and White picture - RGB 565, 200x50.
as I can calculate the intensity 0..255 of each pixel?
That's what I meant, thanks. ma be this can someone help. I get Intensity 0..255 of each pixel and get the average.
Bitmap cropped = Bitmap.createBitmap(myImage, 503, 270,myImage.getWidth() - 955, myImage.getHeight() - 550);
Bitmap cropped2 = Bitmap.createBitmap(cropped, 0, 0,cropped.getWidth() , cropped.getHeight() / 2 );
final double GS_RED = 0.35;
final double GS_GREEN = 0.55;
final double GS_BLUE = 0.1;
int R, G, B;
int result = 0;
int g = 0;
int ff;
for(int x = 0; x < cropped2.getWidth(); x++)
{
int ff_y = 0;
for(int y = 0; y < cropped2.getHeight(); y++)
{
Pixel = cropped.getPixel(x, y);
R = Color.red(Pixel);
G = Color.green(Pixel);
B = Color.blue(Pixel);
ff = (int)(GS_RED * R + GS_GREEN * G + GS_BLUE * B) ;
ff_y += ff;
}
result += ff_y;
g = result / (cropped2.getWidth()*cropped2.getHeight());
}
Toast.makeText(this, "00" + g, Toast.LENGTH_LONG).show();
You could try to convert it using a color model with a luminance and two chrominance components. The luminance component accounts for the brightness while the two chrominance components represent the colors. You might want to check out http://en.wikipedia.org/wiki/YUV.
Otherwise: If I'm correct, the white over gray to black colors have equal values in a RGB format which has the same number of bits for each channel (e.g. from (0, 0, 0) to (255, 255, 255)). Assuming this is true you could just take one of the channels to represent the intensity as you could determine the other values from that. No guarantee if this works.
Edit:
I wrote a snippet demonstrating the idea described above. I used RGB888 but it should also work with RGB 565 after dropping the assertion and modifying the maximum intensity of a pixel as described in the comments. Mind that there are only 2^5 different intensity levels per pixel. Hence you might want to use a scaled version of the average intensity.
I tested it using images from http://www.smashingmagazine.com/2008/06/09/beautiful-black-and-white-photography/. I hope it will work out porting this to android for you.
// 2^5 for RGB 565
private static final int MAX_INTENSITY = (int) Math.pow(2, 8) - 1;
public static int calculateIntensityAverage(final BufferedImage image) {
long intensitySum = 0;
final int[] colors = image.getRGB(0, 0, image.getWidth(),
image.getHeight(), null, 0, image.getWidth());
for (int i = 0; i < colors.length; i++) {
intensitySum += intensityLevel(colors[i]);
}
final int intensityAverage = (int) (intensitySum / colors.length);
return intensityAverage;
}
public static int intensityLevel(final int color) {
// also see Color#getRed(), #getBlue() and #getGreen()
final int red = (color >> 16) & 0xFF;
final int blue = (color >> 0) & 0xFF;
final int green = (color >> 8) & 0xFF;
assert red == blue && green == blue; // doesn't hold for green in RGB 565
return MAX_INTENSITY - blue;
}