Scaling from ImageView to image. - android

ok so this is a hard one (in my head).
mframe, sframe1, sphoto1, sframe2, sphoto2 has its own scales and dimensions:
a width and a height is the dimensions that these objects have.
The plan:
Sframe2 gets dragged on to sframe1. When I let go of the mouse sphoto2's dimensions (which are scaled within the boundaries of sframe2) need to be dropped in the scaled location of sphoto1 (which resides scaled within sframe1).
to be able to drop sframe2 within sframe1 on the location I let go I need to be able to correlate the location it was dropped on to the scaled image as I want to merge sphoto2 with sphoto1.
sframe1 and sframe2 have coordinates on mframe. sphoto1 and sphoto2 only have private coordinates (such as I can merge the images to and x and y position on them.).
The problem is that because the photos inside are scaled differently to these frames I have figure out the scaling factors to be able to correctly merge sphoto2 with sphoto1 with photo2 at the correct size and position on sphoto1.
so the question is... How can I do that?
Below is a diagram to assist in visually representing the problem.
Here is also a video to show you what it should not do. The image inside the frame needs to scale and merge on the other image correctly.
http://www.youtube.com/watch?v=N17Rrs1dSz0&feature=youtu.be
My mind is fried. Can you figure out what needs to scale what?

You can set layout params for that image and multiply with screen ratio, example:
imageview.setLayoutParams(new LinearLayout.LayoutParams(
(int) (250 * config.ratio), (int) (280 * config.ratio)));
But if you use this solution, you must calculate sceen ratio before scaling your image

Related

How to scale with the camera in Libgdx

I am trying to render a Sprite onto my phone screen. My world has a size of 100x100 units and I would like to split it into 10 equal rectangles (10 x 100 units each).
Each of them will be viewed as full screen and I want the camera to be able to scroll from one to another according to the character movement (as the character in the game reaches the halfway width of the rectangle).
The problem is that the camera zooms in too much to the Sprite area and the Sprite rendered doesn't respect the aspect ratio of the PNG file.
Should I use a shape render object such as a rectangle which would be the same size as the phone screen and fill the rectangle with parts of the Sprite, then somehow scale this shape render rectangle in order to preserve the aspect ratio of the PNG file?
Please advise me as to what is best?
If you do not specify units then Orthographic camera has a accessible zoom field. But it is always best to specify what you want exactly.
If you want to have 10 "things" next to eachother and fitting on the camera I would just specify that.
int thingsWidth = 1; //1 could stand for meter
int amountOfThings = 10;
//give you texture/image/sprite the width of "thingsWidth"
#override
public void resize(float width, float height)
{
float camWidth = thingsWidth * amountOfThings;
//You probably want to keep the aspect ration of the window
float camHeight = camWidth * ((float)height / (float)width);
camera.viewportWidth = camWidth;
camera.viewportHeight = camHeight;
camera.update;
}
This is basically how the camera works with a regular screenViewport since we did not specify a specific viewport.
I'm not sure what you want to achieve exactly but Scene2D Table could work in your favor too. You just set table.setFillParent(true); then add 10 of your images to the table using something like table.add(someActor).expand().fill(). Now all your actors will fully expand and fill vertical and share the horizontal space. Now it does not matter how you setup your camera since the table takes care of the layout.

strange behaviour of live wallpaper in preview [duplicate]

I am learning how to make live wallpapers, but I have a dilemma I'm sure all who start off have as well.
There is so many resolution screen sizes, how can I just make one set of artwork to be rescaled in code for all versions? I know it's been done as I seen the images in the apk's on a lot of them and they get rescaled.
If it was just one image that did not need any positioning that would be easy, but my problem is I have to get the background image rescaled to fit all devices, I also have animations that fit in a certain x and y position on that background image to fit in place so it looks like the whole background is being animated but only parts of it is (my way of staying away from 300 images of frame by frame live wallpapers).
So the background image needs to be rescaled and the animations need to be rescaled as well to the exact percentage as the background image and they need to sit in a specific x and y position.
Any help would be appreciated so I can get this going.
I tired a few things, figured I would make a scaler for everything example: int scaler; then in onSurfaceChanged scaler = width /1024; //if the bigger image is 1024. that will give me a ratio to work with everywhere. then scale accordingly using scaleBitmap by multiplying the scaler by the image height and width, and also use the same scaler for positioning example image x lets say is at 50, scale it using the same thing x = scaler * 50; that should take care of scaling and positioning, just how to translate all this into java is the next lesson, since I'm new to java, I used to program for flash and php but this is a lot different, take some getting used to. Next thing is how to pan the width, when you move your screen from side to side how to make the image show is the next puzzle I have figure out. Right now it just shows the same width no matter what even though the width is double what the surface shows. If you got an answer or somewhere I can find out the info on this one that would be greatly appreciated.
Well, um, all I can say is "Welcome to the real world." You get your screen dimensions passed to you via onSurfaceChanged, and yes, it is your job to figure out how to scale everything based on this data. That's why they pay us the big bucks. :-)
You will want to make sure your resources are large enough to fit the biggest display you intend to support, so you will always be shrinking things (which distorts much less than expanding things).
Suggest starting with "best practices for screen independence" here: http://developer.android.com/guide/practices/screens_support.html
Additional comments in re your request for more help...
You cannot (necessarily) scale your artwork just using the width, because you need to support multiple aspect ratios. If the screen proportions do not match your artwork, you must decide if you want to distort your artwork, leave blank spaces, etc.
I'm not sure how to interpret your trouble passing around the screen dimensions. Most of us put all of our active code within a single engine class, so our methods can share data via private variables. For example, in the Cube wallpaper in the SDK, onSurfaceChanged() sets mCenterX for later use in drawCube(). I suggest beginning with a similar, simple approach.
Handling scrolling takes some "intelligence" and a careful assessment of the data you receive via onOffsetsChanged(). xStep indicates how many screens your launcher supports. Normally xStep will be 0.25, indicating 5 screens (i.e. xOffset = 0, 0.25, 0.5, 0.75, or 1) but it can be any value from 0 to 1; 0.5 would indicate 3 screens. xPixels gives you an indication of how much the launcher "wants" you to shift your imagery based on the screen you're on; normally you should respect this. On my phone, the launcher "desires" a virtual wallpaper with twice the pixels of the physical screen, so each scroll is supposed to shift things only one quarter of one screen's pixels. All this, and more, is documented in http://developer.android.com/reference/android/app/WallpaperManager.html
This is not "easy" coding--apps are easier than wallpaper. :-)
Good luck...George
P.S. I'll throw in one more thing: somewhere along the line you might want to retrieve the "desired minimum width" of the wallpaper desired by the launcher, so you can explicitly understand the virtualization implicit in xPixels. For example, in my engine constructor, I have
mContext = getApplicationContext();
mWM = WallpaperManager.getInstance(mContext);
mDW = mWM.getDesiredMinimumWidth();
My device has 320 pixel width; I get mDW = 640; as I scroll from screen to screen, xPixels changes by 80 each time...because four scrolls (across five screens) is supposed to double the amount of revealed artwork (this effect is called "parallax scrolling"). The rightmost section has xPixels equals 0; the center (of five) sections has xPixels = -160, etc.
I've used this code snippet to scale one image to fit on different screen sizes.
Bitmap image1, pic1;
image1 = BitmapFactory.decodeResource(getResources(), R.drawable.image1);
float xScale = (float) canvas.getWidth() / image1.getWidth();
float yScale = (float) canvas.getHeight() / image1.getHeight();
float scale = Math.max(xScale, yScale); //selects the larger size to grow the images by
//scale = (float) (scale*1.1); //this allows for ensuring the image covers the whole screen.
scaledWidth = scale * image1.getWidth();
scaledHeight = scale * image1.getHeight();
pic1 = Bitmap.createScaledBitmap(image1, (int)scaledWidth, (int)scaledHeight, true);
Make sure that the edges don't contain vital information as it will be scaled out of the picture on some screen ratios.

Android ImageView hot spot mapping

I have an image of size 1024x768 where hotspots are mapped to work on 10" tablet but when I run my application on kindle fire the image size is reduced and hotspots won't work. Is there any formula to map the coordinates on a smaller image to be mapped with larger image ?
You don't give enough detail to provide a precise answer.
What are you using to display the image? ImageView?
Is the image scaled/cropped to maintain the aspect ratio?
Are you getting X and Y in a touch listener?
Are your hot spots implemented with some kind of hit tester comparing touched X,Y with the hot spot definitions?
Assuming ImageView and a touch listener getting X and Y, then you need to scale the hot spots to whatever resolution your image is shown at. I've done this recently by extending the ImageView class and overriding the onMeasure() callback. In onMeasure, determine whether the image is landscape or portrait then calculate the scaling factor between your images native size (the size for which you specified the hot spots) and the display size.
Something like this:
if (this.getWidth() > this.getHeight()) {
scaleFactor = ((float)this.getWidth() / (float)this.originalBitmapWidth);
} else {
scaleFactor = ((float)this.getHeight() / (float)this.originalBitmapHeight);
}
for (Hotspot hotspot : hotspots){
hotspot.setScale(scaleFactor);
}

android (Advanced)Saving a Bitmap Canvas with DrawText but textsize calculation needed

I have a Canvas that i draw text on.
(this is quite advanced i think hope you can follow me)
See attached image below.
The functionality is that I can tap on the screen to change the textsize.
Tap left screen = smaller Font.
Tap right Screen = bigger Font.
I can then also move the text on the screen.
When textsize is ok and i have moved the text where i want it,
Then I want to save it back to the original Bitmap.
I use options.inSampleSize = 4; to initially load the Bitmap
The ImageView that have the Bitmap is of course smaller then the original Image.
Some kind of calculation is needed.
This tends to be quite difficult to do.
I have the options.inSampleSize = 4 Bitmaps Ratio.
It's 0.59, 0.69 something depending on Landscape or portrait.
Im playing around with that to somehow change the new BitmapsetTextSize
to look the same as the ImageView smaller Bitmap.
What could i do here?
I have a feeling that since one never know what size an image have.
I have to somehow scale/constrain the Loaded Bitmap Ratio to a fixed Ratio.
Then i need to using percentage or something to transfer the text location
to the bigger image.
I can kind of do that when it comes to initial
(red small ball on picture) location. Hence, the starting point of the text.
But i dont know how long the text is so im stuck so so speak and asking for advice
One way i tried was to divide paint.getTextSize() with the Ratio something like 0.59. That looked like a solution at first. But the image ratio is not fixed and the Font size is not fixed something else is needed.
Here are two pictures showing the problem.
On phone Bitmap:
The saved new Bitmap:
I'm not 100% clear that I understand what you mean, but here's a go. It sounds like you were close to the right approach. Instead of using a fixed ratio, you need to calculate the ratio that the image is scaled by to fit in the view on the phone, then you can scale the text by the inverse ratio. So in steps:
Measure the width of the original image (height would do just as well, but we just need one dimension)
Measure the width of the scaled image
Calculate ratio (ratio = original / scaled)
Let the user type their text
You can then get the text size using something like: float paintSize = paint.getTextSize();
For rendering on the final image, use paint.setTextSize(paintSize / ratio);.

android live wallpaper rescaling

I am learning how to make live wallpapers, but I have a dilemma I'm sure all who start off have as well.
There is so many resolution screen sizes, how can I just make one set of artwork to be rescaled in code for all versions? I know it's been done as I seen the images in the apk's on a lot of them and they get rescaled.
If it was just one image that did not need any positioning that would be easy, but my problem is I have to get the background image rescaled to fit all devices, I also have animations that fit in a certain x and y position on that background image to fit in place so it looks like the whole background is being animated but only parts of it is (my way of staying away from 300 images of frame by frame live wallpapers).
So the background image needs to be rescaled and the animations need to be rescaled as well to the exact percentage as the background image and they need to sit in a specific x and y position.
Any help would be appreciated so I can get this going.
I tired a few things, figured I would make a scaler for everything example: int scaler; then in onSurfaceChanged scaler = width /1024; //if the bigger image is 1024. that will give me a ratio to work with everywhere. then scale accordingly using scaleBitmap by multiplying the scaler by the image height and width, and also use the same scaler for positioning example image x lets say is at 50, scale it using the same thing x = scaler * 50; that should take care of scaling and positioning, just how to translate all this into java is the next lesson, since I'm new to java, I used to program for flash and php but this is a lot different, take some getting used to. Next thing is how to pan the width, when you move your screen from side to side how to make the image show is the next puzzle I have figure out. Right now it just shows the same width no matter what even though the width is double what the surface shows. If you got an answer or somewhere I can find out the info on this one that would be greatly appreciated.
Well, um, all I can say is "Welcome to the real world." You get your screen dimensions passed to you via onSurfaceChanged, and yes, it is your job to figure out how to scale everything based on this data. That's why they pay us the big bucks. :-)
You will want to make sure your resources are large enough to fit the biggest display you intend to support, so you will always be shrinking things (which distorts much less than expanding things).
Suggest starting with "best practices for screen independence" here: http://developer.android.com/guide/practices/screens_support.html
Additional comments in re your request for more help...
You cannot (necessarily) scale your artwork just using the width, because you need to support multiple aspect ratios. If the screen proportions do not match your artwork, you must decide if you want to distort your artwork, leave blank spaces, etc.
I'm not sure how to interpret your trouble passing around the screen dimensions. Most of us put all of our active code within a single engine class, so our methods can share data via private variables. For example, in the Cube wallpaper in the SDK, onSurfaceChanged() sets mCenterX for later use in drawCube(). I suggest beginning with a similar, simple approach.
Handling scrolling takes some "intelligence" and a careful assessment of the data you receive via onOffsetsChanged(). xStep indicates how many screens your launcher supports. Normally xStep will be 0.25, indicating 5 screens (i.e. xOffset = 0, 0.25, 0.5, 0.75, or 1) but it can be any value from 0 to 1; 0.5 would indicate 3 screens. xPixels gives you an indication of how much the launcher "wants" you to shift your imagery based on the screen you're on; normally you should respect this. On my phone, the launcher "desires" a virtual wallpaper with twice the pixels of the physical screen, so each scroll is supposed to shift things only one quarter of one screen's pixels. All this, and more, is documented in http://developer.android.com/reference/android/app/WallpaperManager.html
This is not "easy" coding--apps are easier than wallpaper. :-)
Good luck...George
P.S. I'll throw in one more thing: somewhere along the line you might want to retrieve the "desired minimum width" of the wallpaper desired by the launcher, so you can explicitly understand the virtualization implicit in xPixels. For example, in my engine constructor, I have
mContext = getApplicationContext();
mWM = WallpaperManager.getInstance(mContext);
mDW = mWM.getDesiredMinimumWidth();
My device has 320 pixel width; I get mDW = 640; as I scroll from screen to screen, xPixels changes by 80 each time...because four scrolls (across five screens) is supposed to double the amount of revealed artwork (this effect is called "parallax scrolling"). The rightmost section has xPixels equals 0; the center (of five) sections has xPixels = -160, etc.
I've used this code snippet to scale one image to fit on different screen sizes.
Bitmap image1, pic1;
image1 = BitmapFactory.decodeResource(getResources(), R.drawable.image1);
float xScale = (float) canvas.getWidth() / image1.getWidth();
float yScale = (float) canvas.getHeight() / image1.getHeight();
float scale = Math.max(xScale, yScale); //selects the larger size to grow the images by
//scale = (float) (scale*1.1); //this allows for ensuring the image covers the whole screen.
scaledWidth = scale * image1.getWidth();
scaledHeight = scale * image1.getHeight();
pic1 = Bitmap.createScaledBitmap(image1, (int)scaledWidth, (int)scaledHeight, true);
Make sure that the edges don't contain vital information as it will be scaled out of the picture on some screen ratios.

Categories

Resources