I am creating layout for finger selection. In this I am trying to achieve click events for each individual finger. This layout should be uniform on any type of screen resolution.
My approach:
Inside relative layout, I am assigning radio buttons (not radio group but individual) to each finger inside hand image using margins and padding but it is not resting properly over finger image. They are slightly moving left or right.
Problem in this - radio button positions is changing if screen resolution changes.
I failed to find library for such click events. Also in SO I didn't find any related questions. Can someone guide me in this to library or example or better approach than this?
A several years ago I worked on the similar task. Unfortunately, I don't remember the whole solution, but idea was pretty simple. In my case it was an image of the map where a user could select a district by tapping the map. I knew the resolution of the original image that I used to display in UI. I encoded each district against its boundaries so it gave me a list of pair's number. I had a touch listener attached to ImageView that was used to display the map. So every time a user clicked on the map I got a position of his click, multiply this value by a scale factor(this one was calculated based on the size of original image and the one that was scaled by Android). Then I checked if that value laid in any polygons.
So to make it more clear:
Let width, height = size of original image
x, y = user touch
scaleWidth, scaleHeight = size of the image displayed by Android on the user device
scaleX = scaleWidth / width, scaleY = scaleHeight / height
originalX = scaleX * x, originalY = scaleY * y
Then check if originalX and originalY fits in polygons. In your case those polygons could be just squares around every finger.
Related
I need to apply click/touch events for only visible part of the View. Say for example a image of size 200X200. Apart from center 50X50, remaining part is transparent. I want to get touch events only for that 50X50 visible part Not on remaining transparent part.
In above image (its single image), only inner Diamond has got visible part. Apart from that Diamond is transparent area. So, if I touch Diamond then only I want to do something else ignore.
Edit :
Rachita's link helped me. I gone through that link and got idea how can I implement. But I could not understand some constants like 320, 240 etc while creating Points. In my case, I know the Diamond (in above image) x and y Ponits (hard coded values asctually). So, using those how can I determine, whether I touched inside Diamond or outside?
my Diamond points are as below
pointA = new Point(0, 183);
pointB = new Point(183, 0);
pointC = new Point(366, 183);
pointD = new Point(183, 366);
Edit :
Finally got solution from Luksprog. Its based on checking touched point pixel color. If color is 0 means, you touched transparent layer else you touched some colored part of the image. Simple, but very effective. Have a look at it here.
AFAIK you can not implement this with onclick listener or my any other direct way .You will have to use onTouchListener .
Firstly set your view dynamically at a specific (x,y) position using this How can I dynamically set the position of view in Android?
Calculate the region your diamond will occupy (you should khow the size of image inorder to calculate area of diamond)
3.Trigger a action in onTouchListener only when x, y fall in the required region. Use How to get the Touch position in android?
check this link to calculate if a given point lies in the required square
EDIT
To understand the coordinate system of android refer to this link How do android screen coordinates work?
Display mdisp = getWindowManager().getDefaultDisplay();
int maxX= mdisp.getWidth();
int maxY= mdisp.getHeight();
(x,y) :-
1) (0,0) is top left corner.
2) (maxX,0) is top right corner
3) (0,maxY) is bottom left corner
4) (maxX,maxY) is bottom right corner
here maxX and maxY are screen maximum height and width in pixels, which we have retrieved in above given code.
Remember if you want to support multiple devices with different screen sizes,make sure you use a relative value for x,y ie some ratio of screen height or width ,as different devices have different ppi
Check if touched point lies in the required polygon
I thinks these link might help you determining if the point touched (you can get x,y from onTouch event eg.event.getX()) lies in the required polygon whose points you have mentioned in the question . determine if a given point is inside the polygon and How can I determine whether a 2D Point is within a Polygon?
I want to achieve a tilt effect when a button is clicked, on Android OS.
Tilt Effect: Not the whole button will be seen as pressed. Only the part that touch event occured should seem to be pressed.
Is this easily possible on Android?
A simple way would be to use canvas draws to draw 4 sided shapes.
Consider each 4 corners. The "untouched" rectangle would be full size the touched rectangle would be smaller.
You just need to draw your four sided shape using a point you calculate for each part of the rectangle. You can get the touch position, then figure out how much "weight" to give each point.
to calculate each corner, you need to figure out how much "weight" to give the touched coordinate, and how much "weight" to give the untouched coordinate. If you touch the top left corner, that corner would use 100% of the touched coordinate, and the other three corners would all use the untouched coordinate.
If you touched the top middle, you would get a shape like this:
We can calculate the corners for any touch spot, by calculating how far from the corner your touch is
float untouchedXWeight1 = Math.abs(xt - x1)/width;
//maximum of 1, minimum of 0
float untouchedYWeight1 = Math.abs(yt - y1)/height;
float untouchedWeight1 = (untouchedXWeight1 + untouchedYWeight1)/2;
//also maximum of 1, minimum of 0
float touchedWeight1 = 1 - untouchedWeight1;
so with those weights, you can calculate your x and y positions for that corner:
x1 = xUntouched1 * untouchedWeight + xTouched1 * touchedWeight1;
y1 = yUntouched1 * untouchedWeight + yTouched1 * touchedWeight1;
Then do similarly for the other 3 corners.
I've created a first draft here : https://github.com/flavienlaurent/TiltEffect
In a second step, I will make it usable with Button etc.
Unfortunatly, I didn't use the very good (but too mathematical for me) answer of HalR
I am learning how to make live wallpapers, but I have a dilemma I'm sure all who start off have as well.
There is so many resolution screen sizes, how can I just make one set of artwork to be rescaled in code for all versions? I know it's been done as I seen the images in the apk's on a lot of them and they get rescaled.
If it was just one image that did not need any positioning that would be easy, but my problem is I have to get the background image rescaled to fit all devices, I also have animations that fit in a certain x and y position on that background image to fit in place so it looks like the whole background is being animated but only parts of it is (my way of staying away from 300 images of frame by frame live wallpapers).
So the background image needs to be rescaled and the animations need to be rescaled as well to the exact percentage as the background image and they need to sit in a specific x and y position.
Any help would be appreciated so I can get this going.
I tired a few things, figured I would make a scaler for everything example: int scaler; then in onSurfaceChanged scaler = width /1024; //if the bigger image is 1024. that will give me a ratio to work with everywhere. then scale accordingly using scaleBitmap by multiplying the scaler by the image height and width, and also use the same scaler for positioning example image x lets say is at 50, scale it using the same thing x = scaler * 50; that should take care of scaling and positioning, just how to translate all this into java is the next lesson, since I'm new to java, I used to program for flash and php but this is a lot different, take some getting used to. Next thing is how to pan the width, when you move your screen from side to side how to make the image show is the next puzzle I have figure out. Right now it just shows the same width no matter what even though the width is double what the surface shows. If you got an answer or somewhere I can find out the info on this one that would be greatly appreciated.
Well, um, all I can say is "Welcome to the real world." You get your screen dimensions passed to you via onSurfaceChanged, and yes, it is your job to figure out how to scale everything based on this data. That's why they pay us the big bucks. :-)
You will want to make sure your resources are large enough to fit the biggest display you intend to support, so you will always be shrinking things (which distorts much less than expanding things).
Suggest starting with "best practices for screen independence" here: http://developer.android.com/guide/practices/screens_support.html
Additional comments in re your request for more help...
You cannot (necessarily) scale your artwork just using the width, because you need to support multiple aspect ratios. If the screen proportions do not match your artwork, you must decide if you want to distort your artwork, leave blank spaces, etc.
I'm not sure how to interpret your trouble passing around the screen dimensions. Most of us put all of our active code within a single engine class, so our methods can share data via private variables. For example, in the Cube wallpaper in the SDK, onSurfaceChanged() sets mCenterX for later use in drawCube(). I suggest beginning with a similar, simple approach.
Handling scrolling takes some "intelligence" and a careful assessment of the data you receive via onOffsetsChanged(). xStep indicates how many screens your launcher supports. Normally xStep will be 0.25, indicating 5 screens (i.e. xOffset = 0, 0.25, 0.5, 0.75, or 1) but it can be any value from 0 to 1; 0.5 would indicate 3 screens. xPixels gives you an indication of how much the launcher "wants" you to shift your imagery based on the screen you're on; normally you should respect this. On my phone, the launcher "desires" a virtual wallpaper with twice the pixels of the physical screen, so each scroll is supposed to shift things only one quarter of one screen's pixels. All this, and more, is documented in http://developer.android.com/reference/android/app/WallpaperManager.html
This is not "easy" coding--apps are easier than wallpaper. :-)
Good luck...George
P.S. I'll throw in one more thing: somewhere along the line you might want to retrieve the "desired minimum width" of the wallpaper desired by the launcher, so you can explicitly understand the virtualization implicit in xPixels. For example, in my engine constructor, I have
mContext = getApplicationContext();
mWM = WallpaperManager.getInstance(mContext);
mDW = mWM.getDesiredMinimumWidth();
My device has 320 pixel width; I get mDW = 640; as I scroll from screen to screen, xPixels changes by 80 each time...because four scrolls (across five screens) is supposed to double the amount of revealed artwork (this effect is called "parallax scrolling"). The rightmost section has xPixels equals 0; the center (of five) sections has xPixels = -160, etc.
I've used this code snippet to scale one image to fit on different screen sizes.
Bitmap image1, pic1;
image1 = BitmapFactory.decodeResource(getResources(), R.drawable.image1);
float xScale = (float) canvas.getWidth() / image1.getWidth();
float yScale = (float) canvas.getHeight() / image1.getHeight();
float scale = Math.max(xScale, yScale); //selects the larger size to grow the images by
//scale = (float) (scale*1.1); //this allows for ensuring the image covers the whole screen.
scaledWidth = scale * image1.getWidth();
scaledHeight = scale * image1.getHeight();
pic1 = Bitmap.createScaledBitmap(image1, (int)scaledWidth, (int)scaledHeight, true);
Make sure that the edges don't contain vital information as it will be scaled out of the picture on some screen ratios.
I have an onTouchListener on an ImageView and I use event.getX() or getY().
My goal is to display an image and launch a dialog or something when the user touch a particular part of my image.
The problem is that with different screen, the X et Y values change for the same part of my image view.
How can I get the real position of the event in pixel on every screen ?
For instance I would like to display an Android face, and do something when the user click in his eyes...
Write your code to detect the touch at a specified point using a fixed resolution, e.g. 480x640. Then get the resolution of the device the app is running on using DisplayMetrics. Calculate xScale and yScale (e.g. DisplayMetrics.widthPixels / 480) and multiply your x and y by these scale factors.
I am learning how to make live wallpapers, but I have a dilemma I'm sure all who start off have as well.
There is so many resolution screen sizes, how can I just make one set of artwork to be rescaled in code for all versions? I know it's been done as I seen the images in the apk's on a lot of them and they get rescaled.
If it was just one image that did not need any positioning that would be easy, but my problem is I have to get the background image rescaled to fit all devices, I also have animations that fit in a certain x and y position on that background image to fit in place so it looks like the whole background is being animated but only parts of it is (my way of staying away from 300 images of frame by frame live wallpapers).
So the background image needs to be rescaled and the animations need to be rescaled as well to the exact percentage as the background image and they need to sit in a specific x and y position.
Any help would be appreciated so I can get this going.
I tired a few things, figured I would make a scaler for everything example: int scaler; then in onSurfaceChanged scaler = width /1024; //if the bigger image is 1024. that will give me a ratio to work with everywhere. then scale accordingly using scaleBitmap by multiplying the scaler by the image height and width, and also use the same scaler for positioning example image x lets say is at 50, scale it using the same thing x = scaler * 50; that should take care of scaling and positioning, just how to translate all this into java is the next lesson, since I'm new to java, I used to program for flash and php but this is a lot different, take some getting used to. Next thing is how to pan the width, when you move your screen from side to side how to make the image show is the next puzzle I have figure out. Right now it just shows the same width no matter what even though the width is double what the surface shows. If you got an answer or somewhere I can find out the info on this one that would be greatly appreciated.
Well, um, all I can say is "Welcome to the real world." You get your screen dimensions passed to you via onSurfaceChanged, and yes, it is your job to figure out how to scale everything based on this data. That's why they pay us the big bucks. :-)
You will want to make sure your resources are large enough to fit the biggest display you intend to support, so you will always be shrinking things (which distorts much less than expanding things).
Suggest starting with "best practices for screen independence" here: http://developer.android.com/guide/practices/screens_support.html
Additional comments in re your request for more help...
You cannot (necessarily) scale your artwork just using the width, because you need to support multiple aspect ratios. If the screen proportions do not match your artwork, you must decide if you want to distort your artwork, leave blank spaces, etc.
I'm not sure how to interpret your trouble passing around the screen dimensions. Most of us put all of our active code within a single engine class, so our methods can share data via private variables. For example, in the Cube wallpaper in the SDK, onSurfaceChanged() sets mCenterX for later use in drawCube(). I suggest beginning with a similar, simple approach.
Handling scrolling takes some "intelligence" and a careful assessment of the data you receive via onOffsetsChanged(). xStep indicates how many screens your launcher supports. Normally xStep will be 0.25, indicating 5 screens (i.e. xOffset = 0, 0.25, 0.5, 0.75, or 1) but it can be any value from 0 to 1; 0.5 would indicate 3 screens. xPixels gives you an indication of how much the launcher "wants" you to shift your imagery based on the screen you're on; normally you should respect this. On my phone, the launcher "desires" a virtual wallpaper with twice the pixels of the physical screen, so each scroll is supposed to shift things only one quarter of one screen's pixels. All this, and more, is documented in http://developer.android.com/reference/android/app/WallpaperManager.html
This is not "easy" coding--apps are easier than wallpaper. :-)
Good luck...George
P.S. I'll throw in one more thing: somewhere along the line you might want to retrieve the "desired minimum width" of the wallpaper desired by the launcher, so you can explicitly understand the virtualization implicit in xPixels. For example, in my engine constructor, I have
mContext = getApplicationContext();
mWM = WallpaperManager.getInstance(mContext);
mDW = mWM.getDesiredMinimumWidth();
My device has 320 pixel width; I get mDW = 640; as I scroll from screen to screen, xPixels changes by 80 each time...because four scrolls (across five screens) is supposed to double the amount of revealed artwork (this effect is called "parallax scrolling"). The rightmost section has xPixels equals 0; the center (of five) sections has xPixels = -160, etc.
I've used this code snippet to scale one image to fit on different screen sizes.
Bitmap image1, pic1;
image1 = BitmapFactory.decodeResource(getResources(), R.drawable.image1);
float xScale = (float) canvas.getWidth() / image1.getWidth();
float yScale = (float) canvas.getHeight() / image1.getHeight();
float scale = Math.max(xScale, yScale); //selects the larger size to grow the images by
//scale = (float) (scale*1.1); //this allows for ensuring the image covers the whole screen.
scaledWidth = scale * image1.getWidth();
scaledHeight = scale * image1.getHeight();
pic1 = Bitmap.createScaledBitmap(image1, (int)scaledWidth, (int)scaledHeight, true);
Make sure that the edges don't contain vital information as it will be scaled out of the picture on some screen ratios.