Get video pixel data from Exoplayer in Android - android

Is it possible to grab the pixel data (e.g. as RGB byte array) from a running video within the ExoPlayer? Ideally as the real video resolution and not the size as the shown View. I'd want to forward that data to OpenCV for ImageProcessing purposes.
Alternatively I'm looking for a robust (ffmpeg based) Android framework to input videos into OpenCV where the input might be IP-Cameras, local files, online files and online streams.
Any help is appreciated.

WARNING this solution currently only works on my Android 8 emulator because of this.
Ok, here is my solution. I'm using the SimpleExoPlayer with a custom MediaCodecVideoRenderer. I'm not binding the player to a SimpleExoPlayerView because I'm not allowed to if I want to manually grab the image data. Within my custom MediaCodecVideoRenderer I override the processOutputBuffer and use getOutputImage to get a nice standard Android Image. I then send it through my OpenCV code and then transform it back into an Android Bitmap using the OpenCV Utils whenever I need. Careful this code requires API >= 21. Also this codes does not output any audio.
private void startPlayer(Context context, Uri uri) {
BandwidthMeter bandwidthMeter = new DefaultBandwidthMeter();
TrackSelection.Factory videoTrackSelectionFactory = new AdaptiveTrackSelection.Factory(bandwidthMeter);
TrackSelector trackSelector = new DefaultTrackSelector(videoTrackSelectionFactory);
SimpleExoPlayer player = ExoPlayerFactory.newSimpleInstance((eventHandler, videoRendererEventListener, audioRendererEventListener, textRendererOutput, metadataRendererOutput) -> {
return new Renderer[]{new CustomMediaCodecVideoRenderer(context, MediaCodecSelector.DEFAULT, 1000, eventHandler, videoRendererEventListener, 100)};
}, trackSelector);
DataSource.Factory dataSourceFactory = new DefaultDataSourceFactory(context, Util.getUserAgent(context, context.getPackageName()));
ExtractorMediaSource videoSource = new ExtractorMediaSource.Factory(dataSourceFactory).createMediaSource(uri);
LoopingMediaSource loopingMediaSource = new LoopingMediaSource(videoSource);
player.setPlayWhenReady(true);
player.prepare(loopingMediaSource);
}
class CustomMediaCodecVideoRenderer extends MediaCodecVideoRenderer {
CustomMediaCodecVideoRenderer(Context context, MediaCodecSelector mediaCodecSelector, long allowedJoiningTimeMs, #Nullable Handler eventHandler, #Nullable VideoRendererEventListener eventListener, int maxDroppedFrameCountToNotify) {
super(context, mediaCodecSelector, allowedJoiningTimeMs, eventHandler, eventListener, maxDroppedFrameCountToNotify);
}
#Override
protected boolean processOutputBuffer(long positionUs, long elapsedRealtimeUs, MediaCodec codec, ByteBuffer buffer, int bufferIndex, int bufferFlags, long bufferPresentationTimeUs, boolean shouldSkip) throws ExoPlaybackException {
Image image = codec.getOutputImage(bufferIndex);
if (image != null) {
Log.d(MainActivity.class.getName(), "test");
Mat mat = convertYuv420888ToMat(image, false);
// TODO do your thing with the OpenCV Mat
}
return super.processOutputBuffer(positionUs, elapsedRealtimeUs, codec, buffer, bufferIndex, bufferFlags, bufferPresentationTimeUs, shouldSkip);
}
}
I found the Image to Mat conversion here.
private Mat convertYuv420888ToMat(Image image, boolean isGreyOnly) {
int width = image.getWidth();
int height = image.getHeight();
Image.Plane yPlane = image.getPlanes()[0];
int ySize = yPlane.getBuffer().remaining();
if (isGreyOnly) {
byte[] data = new byte[ySize];
yPlane.getBuffer().get(data, 0, ySize);
Mat greyMat = new Mat(height, width, CvType.CV_8UC1);
greyMat.put(0, 0, data);
return greyMat;
}
Image.Plane uPlane = image.getPlanes()[1];
Image.Plane vPlane = image.getPlanes()[2];
// be aware that this size does not include the padding at the end, if there is any
// (e.g. if pixel stride is 2 the size is ySize / 2 - 1)
int uSize = uPlane.getBuffer().remaining();
int vSize = vPlane.getBuffer().remaining();
byte[] data = new byte[ySize + (ySize/2)];
yPlane.getBuffer().get(data, 0, ySize);
ByteBuffer ub = uPlane.getBuffer();
ByteBuffer vb = vPlane.getBuffer();
int uvPixelStride = uPlane.getPixelStride(); //stride guaranteed to be the same for u and v planes
if (uvPixelStride == 1) {
uPlane.getBuffer().get(data, ySize, uSize);
vPlane.getBuffer().get(data, ySize + uSize, vSize);
Mat yuvMat = new Mat(height + (height / 2), width, CvType.CV_8UC1);
yuvMat.put(0, 0, data);
Mat rgbMat = new Mat(height, width, CvType.CV_8UC3);
Imgproc.cvtColor(yuvMat, rgbMat, Imgproc.COLOR_YUV2RGB_I420, 3);
yuvMat.release();
return rgbMat;
}
// if pixel stride is 2 there is padding between each pixel
// converting it to NV21 by filling the gaps of the v plane with the u values
vb.get(data, ySize, vSize);
for (int i = 0; i < uSize; i += 2) {
data[ySize + i + 1] = ub.get(i);
}
Mat yuvMat = new Mat(height + (height / 2), width, CvType.CV_8UC1);
yuvMat.put(0, 0, data);
Mat rgbMat = new Mat(height, width, CvType.CV_8UC3);
Imgproc.cvtColor(yuvMat, rgbMat, Imgproc.COLOR_YUV2RGB_NV21, 3);
yuvMat.release();
return rgbMat;
}

Related

Android ImageReader YUV 420 888 Repeating Data

I am trying to convert an Image received from ImageReader using the Camera 2 API to a OpenCV matrix and display it on screen using CameraBridgeViewBase, more specifically the function deliverAndDrawFrame. The ImageFormat for the reader is YUV_420_888, which, as far as I understand, has a Y plane with grayscale values for each pixel, and a U plane that has U/V every other with 1 for every 4 pixels. However, when I try to display this image it appears as if the image is repeating and is rotated 90 degrees. The code below is supposed to put the YUV data into a OpenCV matrix (just grayscale for now, not rgba):
/**
* Takes an {#link Image} in the {#link ImageFormat#YUV_420_888} and puts it into a provided {#link Mat} in rgba format.
*
* #param yuvImage {#link Image} in the {#link ImageFormat#YUV_420_888} format.
*/
public static void yuv420888imageToRgbaMat(final Image yuvImage, final Mat rgbaMat) {
final Image.Plane
Yp = yuvImage.getPlanes()[0],
UandVp = yuvImage.getPlanes()[1];
final ByteBuffer
Ybb = Yp .getBuffer(),
UandVbb = UandVp.getBuffer();
Ybb .get(mYdata , 0, 480*640 );
UandVbb.get(mUandVData, 0, 480*640 / 2 - 8);
for (int i = 0; i < 640*480; i++) {
for (int j = 0; j < 4; j++) {
mRawRGBAFrameData[i + 640*480*j] = mYdata[i];
}
mRawRGBAFrameData[i*4 ] = mYdata[i];
mRawRGBAFrameData[i*4+1] = mYdata[i];
mRawRGBAFrameData[i*4+2] = mYdata[i];
mRawRGBAFrameData[i*4+3] = -1;
}
}
Here is my code for the OpenCV frame:
private class CameraFrame implements CvCameraViewFrame {
private Mat mRgba;
#Override
public Mat gray() {
return null;
}
#Override
public Mat rgba() {
mRgbaMat.put(0, 0, mRawRGBAFrameData);
return mRgba;
}
public CameraFrame(final Mat rgba) {
super();
mRgba = rgba;
}
}
The code for receiving drawing the frame:
private final ImageReader.OnImageAvailableListener mOnImageAvailableListener = new ImageReader.OnImageAvailableListener() {
#Override
public void onImageAvailable(ImageReader reader) {
final Image yuvImage = reader.acquireLatestImage();
yuv420888imageToRgbaMat(yuvImage, mRgbaMat);
deliverAndDrawFrame(mFrame);
yuvImage.close();
}
};
And, this is the code for making the image reader:
mRgbaMat = new Mat(mFrameHeight, mFrameWidth, CvType.CV_8UC4);
mFrame = new CameraFrame(mRgbaMat);
mImageReader = ImageReader.newInstance(mFrameWidth, mFrameHeight, ImageFormat.YUV_420_888, 1);
mImageReader.setOnImageAvailableListener(mOnImageAvailableListener, mBackgroundHandler);
AllocateCache();
This is the initialization of the arrays:
protected static byte[] mRawRGBAFrameData = new byte[640*480*4], mYdata = new byte[640*480], mUandVData = new byte[640*480 / 2];
Notes: mFrameWidth is 480 and mFrameHeight is 640. One weird thing is that the height and width for ImageReader and the Image received from it have inverted dimensions.
Here is the image with the code above: https://i.stack.imgur.com/lcdzf.png
Here is the image with this instead in yuv420888imageToRgbaMat https://i.stack.imgur.com/T2MOI.png
for (int i = 0; i < 640*480; i++) {
mRawRGBAFrameData[i] = mYdata[i];
}
We can see that data is repeating in the Y frame and for some reason this gives an actual good looking image.
For anyone having the same problem of trying to use OpenCV with the Camera 2 API, I have come up with a solution. The first thing that I discovered was the fact that there is padding in the ByteBuffer that the ImageReader supplies, so this can cause distortion in the output if you do not account for it. Another thing that I chose do to was to create my own SurfaceView and draw to it using a Bitmap instead of using CameraViewBase, and so far it has worked out great. OpenCV has a function Util.matToBitmap that takes a BGR matrix and converts it to an android Bitmap, so that has been useful. I obtain the BGR matrix by putting information from the first two Image.Planes supplied by the ImageReader into an OpenCV one channel matrix that is formatted as YUV 420, and using Imgproc.cvtColor with Imgproc.COLOR_YUV420p2BGR. The important thing to know is that the Y plane of the image has full pixels, but the second UV plane has interleaved pixels that map one to four Y pixels, so the total length of the UV plane is half of the Y plane. See here. Anyways, here is some code:
Initialization of matrices
m_BGRMat = new Mat(Constants.VISION_IMAGE_HEIGHT, Constants.VISION_IMAGE_WIDTH, CvType.CV_8UC3);
m_Yuv420FrameMat = new Mat(Constants.VISION_IMAGE_HEIGHT * 3 / 2, Constants.VISION_IMAGE_WIDTH, CvType.CV_8UC1);
Every frame:
// Convert image to YUV 420 matrix
ImageUtils.imageToMat(image, m_Yuv420FrameMat, m_RawFrameData, m_RawFrameRowData);
// Convert YUV matrix to BGR matrix
Imgproc.cvtColor(m_Yuv420FrameMat, m_BGRMat, Imgproc.COLOR_YUV420p2BGR);
// Flip width and height then mirror vertically
Core.transpose(m_BGRMat, m_BGRMat);
Core.flip(m_BGRMat, m_BGRMat, 0);
// Draw to Surface View
m_PreviewView.drawImageMat(m_BGRMat);
Here is the conversion to YUV 420 matrix:
/**
* Takes an Android {#link Image} in the {#link ImageFormat#YUV_420_888} format and returns an OpenCV {#link Mat}.
*
* #param image {#link Image} in the {#link ImageFormat#YUV_420_888} format
*/
public static void imageToMat(final Image image, final Mat mat, byte[] data, byte[] rowData) {
ByteBuffer buffer;
int rowStride, pixelStride, width = image.getWidth(), height = image.getHeight(), offset = 0;
Image.Plane[] planes = image.getPlanes();
if (data == null || data.length != width * height) data = new byte[width * height * ImageFormat.getBitsPerPixel(ImageFormat.YUV_420_888) / 8];
if (rowData == null || rowData.length != planes[0].getRowStride()) rowData = new byte[planes[0].getRowStride()];
for (int i = 0; i < planes.length; i++) {
buffer = planes[i].getBuffer();
rowStride = planes[i].getRowStride();
pixelStride = planes[i].getPixelStride();
int
w = (i == 0) ? width : width / 2,
h = (i == 0) ? height : height / 2;
for (int row = 0; row < h; row++) {
int bytesPerPixel = ImageFormat.getBitsPerPixel(ImageFormat.YUV_420_888) / 8;
if (pixelStride == bytesPerPixel) {
int length = w * bytesPerPixel;
buffer.get(data, offset, length);
// Advance buffer the remainder of the row stride, unless on the last row.
// Otherwise, this will throw an IllegalArgumentException because the buffer
// doesn't include the last padding.
if (h - row != 1)
buffer.position(buffer.position() + rowStride - length);
offset += length;
} else {
// On the last row only read the width of the image minus the pixel stride
// plus one. Otherwise, this will throw a BufferUnderflowException because the
// buffer doesn't include the last padding.
if (h - row == 1)
buffer.get(rowData, 0, width - pixelStride + 1);
else
buffer.get(rowData, 0, rowStride);
for (int col = 0; col < w; col++)
data[offset++] = rowData[col * pixelStride];
}
}
}
mat.put(0, 0, data);
}
And finally, drawing
/**
* Given an {#link Mat} that represents a BGR image, draw it on the surface canvas.
* use the OpenCV helper function {#link Utils#matToBitmap(Mat, Bitmap)} to create a {#link Bitmap}.
*
* #param bgrMat BGR frame {#link Mat}
*/
public void drawImageMat(final Mat bgrMat) {
if (m_HolderReady) {
// Create bitmap from BGR matrix
Utils.matToBitmap(bgrMat, m_Bitmap);
// Obtain the canvas and draw the bitmap on top of it
final SurfaceHolder holder = getHolder();
final Canvas canvas = holder.lockCanvas();
canvas.drawBitmap(m_Bitmap, null, new Rect(0, 0, m_HolderWidth, m_HolderHeight), null);
holder.unlockCanvasAndPost(canvas);
}
}
This way works, but I imagine the best way to do it is to set up an OpenGL rendering context and write some sort of simple shader to display the matrix.

Imebra - Change color contrasts

I am able to load dicom image using imebra, and want to change the colors of image, but cant figure out a way. I want to achieve functionality as in Dicomite app.
Following is my code:
public void loadDCM() {
com.imebra.DataSet loadedDataSet = com.imebra.CodecFactory.load(dicomPath.getPath());
com.imebra.VOIs voi = loadedDataSet.getVOIs();
com.imebra.Image image = loadedDataSet.getImageApplyModalityTransform(0);
// com.imebra.Image image = loadedDataSet.getImage(0);
String colorSpace = image.getColorSpace();
long width = image.getWidth();
long height = image.getHeight();
TransformsChain transformsChain = new TransformsChain();
com.imebra.DrawBitmap drawBitmap = new com.imebra.DrawBitmap(transformsChain);
com.imebra.TransformsChain chain = new com.imebra.TransformsChain();
if (com.imebra.ColorTransformsFactory.isMonochrome(image.getColorSpace())) {
// Allocate a VOILUT transform. If the DataSet does not contain any pre-defined
// settings then we will find the optimal ones.
VOILUT voilutTransform = new VOILUT();
// Retrieve the VOIs (center/width pairs)
com.imebra.VOIs vois = loadedDataSet.getVOIs();
// Retrieve the LUTs
List < LUT > luts = new ArrayList < LUT > ();
for (long scanLUTs = 0;; scanLUTs++) {
try {
luts.add(loadedDataSet.getLUT(new com.imebra.TagId(0x0028, 0x3010), scanLUTs));
} catch (Exception e) {
break;
}
}
if (!vois.isEmpty()) {
voilutTransform.setCenterWidth(vois.get(0).getCenter(), vois.get(0).getWidth());
} else if (!luts.isEmpty()) {
voilutTransform.setLUT(luts.get(0));
} else {
voilutTransform.applyOptimalVOI(image, 0, 0, width, height);
}
chain.addTransform(voilutTransform);
com.imebra.DrawBitmap draw = new com.imebra.DrawBitmap(chain);
// Ask for the size of the buffer (in bytes)
long requestedBufferSize = draw.getBitmap(image, drawBitmapType_t.drawBitmapRGBA, 4, new byte[0]);
byte buffer[] = new byte[(int) requestedBufferSize]; // Ideally you want to reuse this in subsequent calls to getBitmap()
ByteBuffer byteBuffer = ByteBuffer.wrap(buffer);
// Now fill the buffer with the image data and create a bitmap from it
drawBitmap.getBitmap(image, drawBitmapType_t.drawBitmapRGBA, 4, buffer);
Bitmap renderBitmap = Bitmap.createBitmap((int) image.getWidth(), (int) image.getHeight(), Bitmap.Config.ARGB_8888);
renderBitmap.copyPixelsFromBuffer(byteBuffer);
image_view.setImageBitmap(renderBitmap);
}
If you are dealing with a monochrome image and you want to modify the presentation luminosity/contrast, then you have to modify the parameters of the VOILUT transform (voilutTransform variable in your code).
You can get the center and width that the transform is applying to the image before calculating the bitmap to be displayed, then modify them before calling drawBitmap.getBitmap again.
E.g., to double the contrast:
voilutTransform.setCenterWidth(voilutTransform.getCenter(), voilutTransform.getWidth() / 2);
// Now fill the buffer with the image data and create a bitmap from it
drawBitmap.getBitmap(image, drawBitmapType_t.drawBitmapRGBA, 4, buffer);
See this answer for more details about the center/width

OpenCV Histogram Matching of Color Image

I am trying to write an Android App that performs histogram matching of color images using OpenCV3.1. I found this code example in C++, and converted it to java.
I tried to match each RGB chanel separately but it did not gave me the desired results. So now I'm converting the images to YUV color space and then match the Y chanels. What I hope to achieve is a brightnes matching, so if the source is brighter then the target I will get darker image.
So far it seems that the Y histogram of the final(output) image is somewhat close to the Y histogram of target image, but the actual output dosen't look like the target.
Here is the relevan code:
private Mat calculateLUT(Mat in_cdf_mat, Mat dst_cdf_mat) {
int last = 0;
double epsilon = Double.parseDouble(epsilonTextView.getText().toString());// epsilon set to 0.01
Mat M = new Mat(256, 1,CvType.CV_8UC1);
for(int j=0; j<in_cdf_mat.rows(); j++) {
double F1j = in_cdf_mat.get(j,0)[0];
for(int k = last; k < dst_cdf_mat.rows(); k++) {
double F2k = dst_cdf_mat.get(k,0)[0];
if(Math.abs(F2k - F1j) < epsilon || F2k > F1j) {
double[] data = {k} ;
M.put(j, 0, data);
last = k;
break;
}
}
}
return M;
}
private void calculateCDF (Mat channel, Mat cdf)
{
// channel holds the histogram. The indices represents the pixel color
// and the value is the amount of pixels of that color in the image
for (int i = 1; i < 256; i++) {
double[] data = new double[1];
data[0] = cdf.get(i-1,0)[0] + channel.get(i,0)[0];
cdf.put(i, 0, data);
}
}
private void calcHistogram(String imgPath, Mat y_hist, Mat y_cdf) {
Mat image;
Mat ycrcb = new Mat();
image = Imgcodecs.imread(imgPath);
Imgproc.cvtColor(image, ycrcb, Imgproc.COLOR_RGB2YCrCb);
image.release();
List<Mat> ycrcbChannels= new ArrayList<>();
Core.split(ycrcb,ycrcbChannels);
List<Mat> yList = new ArrayList<>();
yList.add(ycrcbChannels.get(0));
MatOfInt histSize = new MatOfInt(256);
MatOfFloat histRange = new MatOfFloat(0f, 256f);
Imgproc.calcHist(yList, new MatOfInt(0), new Mat(), y_hist, histSize, histRange, false);
Core.normalize(y_hist, y_hist, 3, 255, Core.NORM_MINMAX);
calculateCDF(y_hist, y_cdf);
Core.normalize(y_cdf, y_cdf, 3, 255, Core.NORM_MINMAX);
}
private void transformLight(Mat inputImage, Mat outputImage, Mat ylut) {
Mat imageYCrCb = new Mat();
Imgproc.cvtColor(inputImage, imageYCrCb, Imgproc.COLOR_RGB2YCrCb);
Mat y_chanel = new Mat();
Core.extractChannel(imageYCrCb, y_chanel, 0);
Mat cr_chanel = new Mat();
Core.extractChannel(imageYCrCb, cr_chanel, 1);
Mat cb_chanel = new Mat();
Core.extractChannel(imageYCrCb, cb_chanel, 2);
Core.LUT(y_chanel, ylut,y_chanel);
ArrayList<Mat> ycrcbDest = new ArrayList<>();
ycrcbDest.add(y_chanel);
ycrcbDest.add(cr_chanel);
ycrcbDest.add(cb_chanel);
Core.merge(ycrcbDest,outputImage);
Imgproc.cvtColor(outputImage, outputImage, Imgproc.COLOR_YCrCb2RGB);
}
private static void drawLine (Mat mat, int i, long bin_w, int hist_h, Mat histImage, Scalar color) {
// bin_w set to 1
Point p0 = new Point(bin_w * (i - 1), hist_h - Math.round(mat.get(i-1,0)[0]) );
Point p1 = new Point(bin_w * (i), hist_h - Math.round(mat.get(i,0)[0]) );
Imgproc.line(histImage, p0, p1, color, 5, 8, 0);
}
private void drawHistogram(Mat histImage, Mat graph, Scalar color) {
for (int i = 1; i < 256; i++) {
drawLine(graph, i, bin_w, histImage.rows(), histImage, color);
}
}
private void histNCDFtoFile(String filename, Mat hist, Mat cdf, Scalar histColor, Scalar cdfColor) {
Mat histImage = new Mat(256, 256, CvType.CV_8UC3);
drawHistogram(histImage, hist, histColor);
drawHistogram(histImage, cdf, cdfColor);
saveImage(filename, histImage);
}
private Mat matchHistograms(String input, String traget) {
Mat input_y_hist = new Mat();
Mat target_y_hist = new Mat();
calcHistogram(input, input_y_hist, input_y_cdf_mat);
histNCDFtoFile("inputHistNCDF.jpg", input_y_hist, input_y_cdf_mat, inputHistColor, inputCDFColor);
calcHistogram(traget, target_y_hist, target_y_cdf_mat);
histNCDFtoFile("targetHistNCDF.jpg", target_y_hist, target_y_cdf_mat, targetHistColor, targetCDFColor);
Mat ylut = calculateLUT(input_y_cdf_mat, target_y_cdf_mat);
Mat image;
Mat dst = new Mat(); // this Matrix will hold the transformed image
image = Imgcodecs.imread(input);
transformLight(image, dst, ylut);
return dst;
}
Here is an exmaple image from pixabay that I want to transform:
And this is the image that I use as a target:
And this is the result:
The CDF of the result and the target is here:
The light green is the target CDF and the light blue is the result CDF

Running OpenCV eye detection from within Android service

I want to run eye detection by OpenCV4Android from Android background service. I have a piece of code that runs well but as an Activity not service. I understand that the Android camera must have a preview to open. So I have created a preview (small one to make it looks hidden, since I want the processing to be in the background) and started the camera for recording. The camera starts successfully, but OpenCV doesn't detect eyes and faces. It only loads the xml classifiers. I expected the callbacks of OpenCV like onCameraViewStarted and onCameraFrame to get called when I open the camera for recording, but they didn't.
Here is the code:
public class BackgroundService extends Service implements SurfaceHolder.Callback, CameraBridgeViewBase.CvCameraViewListener2 {
private static final String TAG = "OCVSample::Activity";
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
private static final int TM_SQDIFF = 0;
private static final int TM_SQDIFF_NORMED = 1;
private static final int TM_CCOEFF = 2;
private static final int TM_CCOEFF_NORMED = 3;
private static final int TM_CCORR = 4;
private static final int TM_CCORR_NORMED = 5;
private int learn_frames = 0;
private Mat templateR;//right eye template
private Mat templateL; // left eye template
int method = 0;
private MenuItem mItemFace50;
private MenuItem mItemFace40;
private MenuItem mItemFace30;
private MenuItem mItemFace20;
private MenuItem mItemType;
private Mat mRgba;
private Mat mGray;
// matrix for zooming
private Mat mZoomWindow;
private Mat mZoomWindow2;
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private CascadeClassifier mJavaDetectorEye;
private int mDetectorType = JAVA_DETECTOR;
private String[] mDetectorName;
private float mRelativeFaceSize = 0.2f;
private int mAbsoluteFaceSize = 0;
private CameraBridgeViewBase mOpenCvCameraView;
private SeekBar mMethodSeekbar;
private TextView mValue;
double xCenter = -1;
double yCenter = -1;
MediaRecorder mediaRecorder;
// Binder given to clients
private final IBinder mBinder = new LocalBinder();
public class LocalBinder extends Binder {
BackgroundService getService() {
// Return this instance of this service so clients can call public methods
return BackgroundService.this;
}
}//end inner class that returns an instance of the service.
#Override
public IBinder onBind(Intent intent) {
return mBinder;
}//end onBind.
private WindowManager windowManager;
private SurfaceView surfaceView;
private Camera camera = null;
#Override
public void onCreate() {
// Start foreground service to avoid unexpected kill
Notification notification = new Notification.Builder(this)
.setContentTitle("Background Video Recorder")
.setContentText("")
.setSmallIcon(R.drawable.vecsat_logo)
.build();
startForeground(1234, notification);
// Create new SurfaceView, set its size to 1x1, move it to the top left corner and set this service as a callback
windowManager = (WindowManager) this.getSystemService(Context.WINDOW_SERVICE);
surfaceView = new SurfaceView(this);
WindowManager.LayoutParams layoutParams = new WindowManager.LayoutParams(
100, 100,
WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH,
PixelFormat.TRANSLUCENT
);
Log.i(TAG, "100 x 100 executed");
layoutParams.gravity = Gravity.LEFT | Gravity.TOP;
windowManager.addView(surfaceView, layoutParams);
surfaceView.getHolder().addCallback(this);
//constructor:
mDetectorName = new String[2];// contains 3 positions..
mDetectorName[JAVA_DETECTOR] = "Java"; //let the detector be of type java detector, specify that in the JAVA_DETECTOR index.
Log.i(TAG, "Instantiated new " + ((Object) this).getClass().getSimpleName());
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_11, this,
mLoaderCallback); //once the application is resumed reload the library.
}
// Method called right after Surface created (initializing and starting MediaRecorder)
#Override
public void surfaceCreated(SurfaceHolder surfaceHolder) {
Log.i(TAG, "surfaceCreated method");
camera = Camera.open(1);
camera.unlock();
mediaRecorder = new MediaRecorder();
mediaRecorder.setPreviewDisplay(surfaceHolder.getSurface());
mediaRecorder.setCamera(camera);
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
mediaRecorder.setProfile(CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH));
mediaRecorder.setOutputFile(
Environment.getExternalStorageDirectory()+"/"+
DateFormat.format("yyyy-MM-dd_kk-mm-ss", new Date().getTime())+
".mp4"
);
try { mediaRecorder.prepare(); } catch (Exception e) {}
mediaRecorder.start();
}
// Stop recording and remove SurfaceView
#Override
public void onDestroy() {
Log.i(TAG, "surfaceDestroyed method");
camera.lock();
camera.release();
windowManager.removeView(surfaceView);
}
#Override
public void surfaceChanged(SurfaceHolder surfaceHolder, int format, int width, int height) {}
#Override
public void surfaceDestroyed(SurfaceHolder surfaceHolder) {
}
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
#Override
public void onManagerConnected(int status) {
//int status, status of initialization, sucess or not..
//now make a switch for the status cases: under success case do the work, load the classifiers..
switch (status) {
case LoaderCallbackInterface.SUCCESS: {
Log.i(TAG, "OpenCV loaded successfully"); // was loaded and initialized successfully..
try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(
R.raw.lbpcascade_frontalface); // get the face classifier from the resource.
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir,
"lbpcascade_frontalface.xml"); // create a directory inside your app, and a file inside it to store the
FileOutputStream os = new FileOutputStream(mCascadeFile); // prepare an output stream that will write the classifier's code on the file in the app.
//read and write
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
// --------------------------------- load left eye
// classificator -----------------------------------
InputStream iser = getResources().openRawResource(
R.raw.haarcascade_lefteye_2splits);
File cascadeDirER = getDir("cascadeER",
Context.MODE_PRIVATE);
File cascadeFileER = new File(cascadeDirER,
"haarcascade_eye_right.xml");
FileOutputStream oser = new FileOutputStream(cascadeFileER);
byte[] bufferER = new byte[4096];
int bytesReadER;
while ((bytesReadER = iser.read(bufferER)) != -1) {
oser.write(bufferER, 0, bytesReadER);
}
iser.close();
oser.close();
//check if you can load the classifer.
mJavaDetector = new CascadeClassifier(
mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Toast.makeText(getApplicationContext(), "face classifier error", Toast.LENGTH_LONG).show();
Log.e(TAG, "Failed to load cascade face classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from "
+ mCascadeFile.getAbsolutePath());
mJavaDetectorEye = new CascadeClassifier(
cascadeFileER.getAbsolutePath());
if (mJavaDetectorEye.empty()) {
Toast.makeText(getApplicationContext(), "eye classifer error", Toast.LENGTH_LONG).show();
Log.e(TAG, "Failed to load cascade eye classifier");
mJavaDetectorEye = null;
} else
Log.i(TAG, "Loaded cascade classifier from "
+ mCascadeFile.getAbsolutePath());
cascadeDir.delete();
} catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
//Whether classifiers are opened or not, open the front camera.
// mOpenCvCameraView.setCameraIndex(1);
//mOpenCvCameraView.enableFpsMeter(); // What is this? This method enables label with fps value on the screen
// mOpenCvCameraView.enableView(); // What? This means enable connecting to the camera.
}
break;
default: {
//When the loading of the libarary is failed
super.onManagerConnected(status);
}
break;
}
}
}; // end the class.
public void onCameraViewStarted(int width, int height) {
Log.i(TAG, "onCameraViewStarted method");
//onCameraViewStarted callback will be delivered only after enableView is called and surface is available
//This method is a member of CvCameraViewListener2, and we must implement it.
mGray = new Mat(); //initialize new gray scale matrix to contain the img pixels.
mRgba = new Mat(); //initialize new rgb matrix to contain the img pixels.
}
public void onCameraViewStopped() {
Log.i(TAG, "onCameraViewStopped method");
//Release the allocated memory
//release the matrix, this releases the allocated space in memory, since mat contains a header that contains img info and a pointer that points to the matrix in the memory.
mGray.release();
mRgba.release();
mZoomWindow.release();
mZoomWindow2.release();
}
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Log.i(TAG, "onCameraFrame method");
//This method is a member of CvCameraViewListener2, and we must implement it.
// In this method we get every frame from the camera and process it in order to track the objects.
//inputFrame is the received frame from the camera.
mRgba = inputFrame.rgba(); //convert the frame to rgba scale, then assign this value to the rgba Mat img matrix.
mGray = inputFrame.gray(); //convert the frame to gray scale, then assign this value to the gray Mat img matrix.
//Shall we consider Flipping the camera img horizontally.
if (mAbsoluteFaceSize == 0) {
int height = mGray.rows(); //get the height of the captured frame stored in mgray Mat array (rows), why gray to rgb???
if (Math.round(height * mRelativeFaceSize) > 0) { //multiply that height with 0.2... Is the result > 0?
//if yes this indicates that there is a frame that was captured (it's height is not zero), so set the face size to
// Math.round(height * mRelativeFaceSize)
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
}
if (mZoomWindow == null || mZoomWindow2 == null)
CreateAuxiliaryMats();
MatOfRect faces = new MatOfRect(); //a matrix that will contain rectangles around the face (including the faces inside the rectangles), it will be filled by detectMultiScale method.
//if mJavaDetector is not null, this contains the face classifier that we have loaded previously
if (mJavaDetector != null)
//if not null, use this classifier to detect faces.
mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2,
2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
new Size(mAbsoluteFaceSize, mAbsoluteFaceSize),
new Size());
//in th function detectMultiScale above,
// faces is the array that will contain the rectangles around the detected face.
// the 3rd param: specifies how much the image size is reduced at each image scale.
//4th param: Parameter specifying how many neighbors each candidate rectangle should have to retain it.
//5: :)
//6: Minimum possible object size. Objects smaller than that are ignored (if you set a very small minimum value, your app will run heavily).
//7: Maximum possible object size. Objects larger than that are ignored. Both minimum and maximum should be set carefully to avoid slow running of the app.
Rect[] facesArray = faces.toArray(); //array of faces
for (int i = 0; i < facesArray.length; i++) {
/* Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(),
FACE_RECT_COLOR, 3);*/
//Now draw rectangles around the obtained faces, and a circle at each rectangle center.
//mrgba in the line bellow means that the rectangle should be drawn on the colored img.
//facesArray[i].tl() returns a Point: Template class for 2D points specified by its coordinates x and y -> Template class
// facesArray[i].x and facesArray[i].y are the x and y coords of the top left top corner.
Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
//calculate the center in x and y coords.
xCenter = (facesArray[i].x + facesArray[i].width + facesArray[i].x) / 2;
yCenter = (facesArray[i].y + facesArray[i].y + facesArray[i].height) / 2;
Point center = new Point(xCenter, yCenter); //store the center.
//Imgproc.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3);
Core.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3); //draw a red circle at the center of the face rectangle.
/*Imgproc.putText(mRgba, "[" + center.x + "," + center.y + "]",
new Point(center.x + 20, center.y + 20),
Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
255));*/
//write the coordinates of the rectangle center:
Core.putText(mRgba, "[" + center.x + "," + center.y + "]",
new Point(center.x + 20, center.y + 20) , // this is the bottom left corner of the text string
Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
255));
Rect r = facesArray[i]; //get the currect face, we want to use it to detect the eyes inside it.
// compute the eye area
//Rect (x, y, w, h)
Rect eyearea = new Rect(r.x + r.width / 8,
(int) (r.y + (r.height / 4.5)), r.width - 2 * r.width / 8,
(int) (r.height / 3.0));
// split it
Rect eyearea_right = new Rect(r.x + r.width / 16,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
Rect eyearea_left = new Rect(r.x + r.width / 16
+ (r.width - 2 * r.width / 16) / 2,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
// draw the area - mGray is working grayscale mat, if you want to
// see area in rgb preview, change mGray to mRgba
/*Imgproc.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
new Scalar(255, 0, 0, 255), 2);
Imgproc.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
new Scalar(255, 0, 0, 255), 2);*/
Core.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
new Scalar(255, 0, 0, 255), 2);
Core.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
new Scalar(255, 0, 0, 255), 2);
if (learn_frames < 5) {
// no learned frames -> Learn templates from at least 5 frames..
templateR = get_template(mJavaDetectorEye, eyearea_right, 24);
templateL = get_template(mJavaDetectorEye, eyearea_left, 24);
learn_frames++;
} else {
// Learning finished, use the new templates for template
// matching
match_eye(eyearea_right, templateR, method);
match_eye(eyearea_left, templateL, method);
}
// cut eye areas and put them to zoom windows
Imgproc.resize(mRgba.submat(eyearea_left), mZoomWindow2,
mZoomWindow2.size());
Imgproc.resize(mRgba.submat(eyearea_right), mZoomWindow,
mZoomWindow.size());
}
return mRgba;
}
private void setMinFaceSize(float faceSize) {
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
}
private void CreateAuxiliaryMats() {
if (mGray.empty())
return;
int rows = mGray.rows();
int cols = mGray.cols();
if (mZoomWindow == null) {
mZoomWindow = mRgba.submat(rows / 2 + rows / 10, rows, cols / 2
+ cols / 10, cols);
mZoomWindow2 = mRgba.submat(0, rows / 2 - rows / 10, cols / 2
+ cols / 10, cols);
}
}
private void match_eye(Rect area, Mat mTemplate, int type) {
Point matchLoc;
Mat mROI = mGray.submat(area);
int result_cols = mROI.cols() - mTemplate.cols() + 1;
int result_rows = mROI.rows() - mTemplate.rows() + 1;
// Check for bad template size
if (mTemplate.cols() == 0 || mTemplate.rows() == 0) {
return ;
}
Mat mResult = new Mat(result_cols, result_rows, CvType.CV_8U);
switch (type) {
case TM_SQDIFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF);
break;
case TM_SQDIFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_SQDIFF_NORMED);
break;
case TM_CCOEFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF);
break;
case TM_CCOEFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCOEFF_NORMED);
break;
case TM_CCORR:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR);
break;
case TM_CCORR_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCORR_NORMED);
break;
}
Core.MinMaxLocResult mmres = Core.minMaxLoc(mResult);
// there is difference in matching methods - best match is max/min value
if (type == TM_SQDIFF || type == TM_SQDIFF_NORMED) {
matchLoc = mmres.minLoc;
} else {
matchLoc = mmres.maxLoc;
}
Point matchLoc_tx = new Point(matchLoc.x + area.x, matchLoc.y + area.y);
Point matchLoc_ty = new Point(matchLoc.x + mTemplate.cols() + area.x,
matchLoc.y + mTemplate.rows() + area.y);
/*Imgproc.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
255));*/
Core.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
255));
Rect rec = new Rect(matchLoc_tx,matchLoc_ty);
}
private Mat get_template(CascadeClassifier clasificator, Rect area, int size) {
Mat template = new Mat(); //prepare a Mat which will serve as a template for eyes.
Mat mROI = mGray.submat(area); //detect only region of interest which is represented by the area. So, from the total Mat get only the submat that represent roi.
MatOfRect eyes = new MatOfRect(); //will be around eyes (including eyes), this will be filled by detectMultiScale
Point iris = new Point(); //to identify iris.
Rect eye_template = new Rect();
clasificator.detectMultiScale(mROI, eyes, 1.15, 2,
Objdetect.CASCADE_FIND_BIGGEST_OBJECT
| Objdetect.CASCADE_SCALE_IMAGE, new Size(30, 30),
new Size());
Rect[] eyesArray = eyes.toArray(); //get the detected eyes
for (int i = 0; i < eyesArray.length;) {
Rect e = eyesArray[i];
e.x = area.x + e.x; //the starting x coordinates of the rect (area) around the eye + the area
e.y = area.y + e.y;
Rect eye_only_rectangle = new Rect((int) e.tl().x,
(int) (e.tl().y + e.height * 0.4), (int) e.width,
(int) (e.height * 0.6));
mROI = mGray.submat(eye_only_rectangle);
Mat vyrez = mRgba.submat(eye_only_rectangle);
Core.MinMaxLocResult mmG = Core.minMaxLoc(mROI);
// Imgproc.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
Core.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
iris.x = mmG.minLoc.x + eye_only_rectangle.x;
iris.y = mmG.minLoc.y + eye_only_rectangle.y;
eye_template = new Rect((int) iris.x - size / 2, (int) iris.y
- size / 2, size, size);
/*Imgproc.rectangle(mRgba, eye_template.tl(), eye_template.br(),
new Scalar(255, 0, 0, 255), 2);*/
Core.rectangle(mRgba, eye_template.tl(), eye_template.br(),
new Scalar(255, 0, 0, 255), 2);
template = (mGray.submat(eye_template)).clone();
return template;
}
return template;
}
public void onRecreateClick(View v)
{
learn_frames = 0;
}
}
Notice that the camera opens successfully for recording, and the xml files are loaded, but nothing happens after that. I made the window size as 100 x 100 just for testing purposes, I know it should be 1 x 1.
Can anyone please tell me how to solve this problem? How can I run opencv video camera for face and eye tracking from background service?
I tried to get the opencv camera in a service as you are doing but I was unable to get neither onCameraFrame nor onCameraViewStarted callbacks, which meant that the camera was not getting initialized. After a bunch of tries:
Setting the preview to INVISIBLE/GONE -> not working
Setting the preview size to a pixel size of 1×1 or respecting
camera's aspect ratio 4x3 ->not working
Setting the preview outside the screen -> not working
I found out that opencv camera needs to be previewed with view's size, only that way I was able to get onCameraFrame callback.
Fortunately, I could place another element on top of the camera preview to hide it, and show the alarms only.
You could find a simple CameraInService example here, hope it is useful for you.

Android make animated video from list of images

I want to make animated video from list of images by applying transition animation between two images. I found many similar questions on SO like,
Android Screen capturing or make video from images
Android- How to make video using set of images from sd card?
All similar SO questions suggest to used animation for that, but how can we store that animated images to video file? Is there any Android library support this facility to make video of images?
Android do not support for AWT's BufferedBitmap nor AWTUtil, that is for Java SE. Currently the solution with SequenceEncoder has been integrated into jcodec's Android version. You can use it from package org.jcodec.api.SequenceEncoder.
Here is the solution for generating MP4 file from series of Bitmaps using jcodec:
try {
File file = this.GetSDPathToFile("", "output.mp4");
SequenceEncoder encoder = new SequenceEncoder(file);
// only 5 frames in total
for (int i = 1; i <= 5; i++) {
// getting bitmap from drawable path
int bitmapResId = this.getResources().getIdentifier("image" + i, "drawable", this.getPackageName());
Bitmap bitmap = this.getBitmapFromResources(this.getResources(), bitmapResId);
encoder.encodeNativeFrame(this.fromBitmap(bitmap));
}
encoder.finish();
} catch (IOException e) {
e.printStackTrace();
}
// get full SD path
File GetSDPathToFile(String filePatho, String fileName) {
File extBaseDir = Environment.getExternalStorageDirectory();
if (filePatho == null || filePatho.length() == 0 || filePatho.charAt(0) != '/')
filePatho = "/" + filePatho;
makeDirectory(filePatho);
File file = new File(extBaseDir.getAbsoluteFile() + filePatho);
return new File(file.getAbsolutePath() + "/" + fileName);// file;
}
// convert from Bitmap to Picture (jcodec native structure)
public Picture fromBitmap(Bitmap src) {
Picture dst = Picture.create((int)src.getWidth(), (int)src.getHeight(), ColorSpace.RGB);
fromBitmap(src, dst);
return dst;
}
public void fromBitmap(Bitmap src, Picture dst) {
int[] dstData = dst.getPlaneData(0);
int[] packed = new int[src.getWidth() * src.getHeight()];
src.getPixels(packed, 0, src.getWidth(), 0, 0, src.getWidth(), src.getHeight());
for (int i = 0, srcOff = 0, dstOff = 0; i < src.getHeight(); i++) {
for (int j = 0; j < src.getWidth(); j++, srcOff++, dstOff += 3) {
int rgb = packed[srcOff];
dstData[dstOff] = (rgb >> 16) & 0xff;
dstData[dstOff + 1] = (rgb >> 8) & 0xff;
dstData[dstOff + 2] = rgb & 0xff;
}
}
}
In case you need to change the fps, you may customize the SequenceEncoder.
You can use a pure java solution called JCodec ( http://jcodec.org ). Here's a CORRECTED simple class that does it using JCodec low-level API:
public class SequenceEncoder {
private SeekableByteChannel ch;
private Picture toEncode;
private RgbToYuv420 transform;
private H264Encoder encoder;
private ArrayList<ByteBuffer> spsList;
private ArrayList<ByteBuffer> ppsList;
private CompressedTrack outTrack;
private ByteBuffer _out;
private int frameNo;
private MP4Muxer muxer;
public SequenceEncoder(File out) throws IOException {
this.ch = NIOUtils.writableFileChannel(out);
// Transform to convert between RGB and YUV
transform = new RgbToYuv420(0, 0);
// Muxer that will store the encoded frames
muxer = new MP4Muxer(ch, Brand.MP4);
// Add video track to muxer
outTrack = muxer.addTrackForCompressed(TrackType.VIDEO, 25);
// Allocate a buffer big enough to hold output frames
_out = ByteBuffer.allocate(1920 * 1080 * 6);
// Create an instance of encoder
encoder = new H264Encoder();
// Encoder extra data ( SPS, PPS ) to be stored in a special place of
// MP4
spsList = new ArrayList<ByteBuffer>();
ppsList = new ArrayList<ByteBuffer>();
}
public void encodeImage(BufferedImage bi) throws IOException {
if (toEncode == null) {
toEncode = Picture.create(bi.getWidth(), bi.getHeight(), ColorSpace.YUV420);
}
// Perform conversion
for (int i = 0; i < 3; i++)
Arrays.fill(toEncode.getData()[i], 0);
transform.transform(AWTUtil.fromBufferedImage(bi), toEncode);
// Encode image into H.264 frame, the result is stored in '_out' buffer
_out.clear();
ByteBuffer result = encoder.encodeFrame(_out, toEncode);
// Based on the frame above form correct MP4 packet
spsList.clear();
ppsList.clear();
H264Utils.encodeMOVPacket(result, spsList, ppsList);
// Add packet to video track
outTrack.addFrame(new MP4Packet(result, frameNo, 25, 1, frameNo, true, null, frameNo, 0));
frameNo++;
}
public void finish() throws IOException {
// Push saved SPS/PPS to a special storage in MP4
outTrack.addSampleEntry(H264Utils.createMOVSampleEntry(spsList, ppsList));
// Write MP4 header and finalize recording
muxer.writeHeader();
NIOUtils.closeQuietly(ch);
}
public static void main(String[] args) throws IOException {
SequenceEncoder encoder = new SequenceEncoder(new File("video.mp4"));
for (int i = 1; i < 100; i++) {
BufferedImage bi = ImageIO.read(new File(String.format("folder/img%08d.png", i)));
encoder.encodeImage(bi);
}
encoder.finish();
}
}

Categories

Resources