Running OpenCV eye detection from within Android service - android

I want to run eye detection by OpenCV4Android from Android background service. I have a piece of code that runs well but as an Activity not service. I understand that the Android camera must have a preview to open. So I have created a preview (small one to make it looks hidden, since I want the processing to be in the background) and started the camera for recording. The camera starts successfully, but OpenCV doesn't detect eyes and faces. It only loads the xml classifiers. I expected the callbacks of OpenCV like onCameraViewStarted and onCameraFrame to get called when I open the camera for recording, but they didn't.
Here is the code:
public class BackgroundService extends Service implements SurfaceHolder.Callback, CameraBridgeViewBase.CvCameraViewListener2 {
private static final String TAG = "OCVSample::Activity";
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
private static final int TM_SQDIFF = 0;
private static final int TM_SQDIFF_NORMED = 1;
private static final int TM_CCOEFF = 2;
private static final int TM_CCOEFF_NORMED = 3;
private static final int TM_CCORR = 4;
private static final int TM_CCORR_NORMED = 5;
private int learn_frames = 0;
private Mat templateR;//right eye template
private Mat templateL; // left eye template
int method = 0;
private MenuItem mItemFace50;
private MenuItem mItemFace40;
private MenuItem mItemFace30;
private MenuItem mItemFace20;
private MenuItem mItemType;
private Mat mRgba;
private Mat mGray;
// matrix for zooming
private Mat mZoomWindow;
private Mat mZoomWindow2;
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private CascadeClassifier mJavaDetectorEye;
private int mDetectorType = JAVA_DETECTOR;
private String[] mDetectorName;
private float mRelativeFaceSize = 0.2f;
private int mAbsoluteFaceSize = 0;
private CameraBridgeViewBase mOpenCvCameraView;
private SeekBar mMethodSeekbar;
private TextView mValue;
double xCenter = -1;
double yCenter = -1;
MediaRecorder mediaRecorder;
// Binder given to clients
private final IBinder mBinder = new LocalBinder();
public class LocalBinder extends Binder {
BackgroundService getService() {
// Return this instance of this service so clients can call public methods
return BackgroundService.this;
}
}//end inner class that returns an instance of the service.
#Override
public IBinder onBind(Intent intent) {
return mBinder;
}//end onBind.
private WindowManager windowManager;
private SurfaceView surfaceView;
private Camera camera = null;
#Override
public void onCreate() {
// Start foreground service to avoid unexpected kill
Notification notification = new Notification.Builder(this)
.setContentTitle("Background Video Recorder")
.setContentText("")
.setSmallIcon(R.drawable.vecsat_logo)
.build();
startForeground(1234, notification);
// Create new SurfaceView, set its size to 1x1, move it to the top left corner and set this service as a callback
windowManager = (WindowManager) this.getSystemService(Context.WINDOW_SERVICE);
surfaceView = new SurfaceView(this);
WindowManager.LayoutParams layoutParams = new WindowManager.LayoutParams(
100, 100,
WindowManager.LayoutParams.TYPE_SYSTEM_OVERLAY,
WindowManager.LayoutParams.FLAG_WATCH_OUTSIDE_TOUCH,
PixelFormat.TRANSLUCENT
);
Log.i(TAG, "100 x 100 executed");
layoutParams.gravity = Gravity.LEFT | Gravity.TOP;
windowManager.addView(surfaceView, layoutParams);
surfaceView.getHolder().addCallback(this);
//constructor:
mDetectorName = new String[2];// contains 3 positions..
mDetectorName[JAVA_DETECTOR] = "Java"; //let the detector be of type java detector, specify that in the JAVA_DETECTOR index.
Log.i(TAG, "Instantiated new " + ((Object) this).getClass().getSimpleName());
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_11, this,
mLoaderCallback); //once the application is resumed reload the library.
}
// Method called right after Surface created (initializing and starting MediaRecorder)
#Override
public void surfaceCreated(SurfaceHolder surfaceHolder) {
Log.i(TAG, "surfaceCreated method");
camera = Camera.open(1);
camera.unlock();
mediaRecorder = new MediaRecorder();
mediaRecorder.setPreviewDisplay(surfaceHolder.getSurface());
mediaRecorder.setCamera(camera);
mediaRecorder.setAudioSource(MediaRecorder.AudioSource.CAMCORDER);
mediaRecorder.setVideoSource(MediaRecorder.VideoSource.CAMERA);
mediaRecorder.setProfile(CamcorderProfile.get(CamcorderProfile.QUALITY_HIGH));
mediaRecorder.setOutputFile(
Environment.getExternalStorageDirectory()+"/"+
DateFormat.format("yyyy-MM-dd_kk-mm-ss", new Date().getTime())+
".mp4"
);
try { mediaRecorder.prepare(); } catch (Exception e) {}
mediaRecorder.start();
}
// Stop recording and remove SurfaceView
#Override
public void onDestroy() {
Log.i(TAG, "surfaceDestroyed method");
camera.lock();
camera.release();
windowManager.removeView(surfaceView);
}
#Override
public void surfaceChanged(SurfaceHolder surfaceHolder, int format, int width, int height) {}
#Override
public void surfaceDestroyed(SurfaceHolder surfaceHolder) {
}
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
#Override
public void onManagerConnected(int status) {
//int status, status of initialization, sucess or not..
//now make a switch for the status cases: under success case do the work, load the classifiers..
switch (status) {
case LoaderCallbackInterface.SUCCESS: {
Log.i(TAG, "OpenCV loaded successfully"); // was loaded and initialized successfully..
try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(
R.raw.lbpcascade_frontalface); // get the face classifier from the resource.
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir,
"lbpcascade_frontalface.xml"); // create a directory inside your app, and a file inside it to store the
FileOutputStream os = new FileOutputStream(mCascadeFile); // prepare an output stream that will write the classifier's code on the file in the app.
//read and write
byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close();
// --------------------------------- load left eye
// classificator -----------------------------------
InputStream iser = getResources().openRawResource(
R.raw.haarcascade_lefteye_2splits);
File cascadeDirER = getDir("cascadeER",
Context.MODE_PRIVATE);
File cascadeFileER = new File(cascadeDirER,
"haarcascade_eye_right.xml");
FileOutputStream oser = new FileOutputStream(cascadeFileER);
byte[] bufferER = new byte[4096];
int bytesReadER;
while ((bytesReadER = iser.read(bufferER)) != -1) {
oser.write(bufferER, 0, bytesReadER);
}
iser.close();
oser.close();
//check if you can load the classifer.
mJavaDetector = new CascadeClassifier(
mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Toast.makeText(getApplicationContext(), "face classifier error", Toast.LENGTH_LONG).show();
Log.e(TAG, "Failed to load cascade face classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from "
+ mCascadeFile.getAbsolutePath());
mJavaDetectorEye = new CascadeClassifier(
cascadeFileER.getAbsolutePath());
if (mJavaDetectorEye.empty()) {
Toast.makeText(getApplicationContext(), "eye classifer error", Toast.LENGTH_LONG).show();
Log.e(TAG, "Failed to load cascade eye classifier");
mJavaDetectorEye = null;
} else
Log.i(TAG, "Loaded cascade classifier from "
+ mCascadeFile.getAbsolutePath());
cascadeDir.delete();
} catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
//Whether classifiers are opened or not, open the front camera.
// mOpenCvCameraView.setCameraIndex(1);
//mOpenCvCameraView.enableFpsMeter(); // What is this? This method enables label with fps value on the screen
// mOpenCvCameraView.enableView(); // What? This means enable connecting to the camera.
}
break;
default: {
//When the loading of the libarary is failed
super.onManagerConnected(status);
}
break;
}
}
}; // end the class.
public void onCameraViewStarted(int width, int height) {
Log.i(TAG, "onCameraViewStarted method");
//onCameraViewStarted callback will be delivered only after enableView is called and surface is available
//This method is a member of CvCameraViewListener2, and we must implement it.
mGray = new Mat(); //initialize new gray scale matrix to contain the img pixels.
mRgba = new Mat(); //initialize new rgb matrix to contain the img pixels.
}
public void onCameraViewStopped() {
Log.i(TAG, "onCameraViewStopped method");
//Release the allocated memory
//release the matrix, this releases the allocated space in memory, since mat contains a header that contains img info and a pointer that points to the matrix in the memory.
mGray.release();
mRgba.release();
mZoomWindow.release();
mZoomWindow2.release();
}
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Log.i(TAG, "onCameraFrame method");
//This method is a member of CvCameraViewListener2, and we must implement it.
// In this method we get every frame from the camera and process it in order to track the objects.
//inputFrame is the received frame from the camera.
mRgba = inputFrame.rgba(); //convert the frame to rgba scale, then assign this value to the rgba Mat img matrix.
mGray = inputFrame.gray(); //convert the frame to gray scale, then assign this value to the gray Mat img matrix.
//Shall we consider Flipping the camera img horizontally.
if (mAbsoluteFaceSize == 0) {
int height = mGray.rows(); //get the height of the captured frame stored in mgray Mat array (rows), why gray to rgb???
if (Math.round(height * mRelativeFaceSize) > 0) { //multiply that height with 0.2... Is the result > 0?
//if yes this indicates that there is a frame that was captured (it's height is not zero), so set the face size to
// Math.round(height * mRelativeFaceSize)
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
}
if (mZoomWindow == null || mZoomWindow2 == null)
CreateAuxiliaryMats();
MatOfRect faces = new MatOfRect(); //a matrix that will contain rectangles around the face (including the faces inside the rectangles), it will be filled by detectMultiScale method.
//if mJavaDetector is not null, this contains the face classifier that we have loaded previously
if (mJavaDetector != null)
//if not null, use this classifier to detect faces.
mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2,
2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
new Size(mAbsoluteFaceSize, mAbsoluteFaceSize),
new Size());
//in th function detectMultiScale above,
// faces is the array that will contain the rectangles around the detected face.
// the 3rd param: specifies how much the image size is reduced at each image scale.
//4th param: Parameter specifying how many neighbors each candidate rectangle should have to retain it.
//5: :)
//6: Minimum possible object size. Objects smaller than that are ignored (if you set a very small minimum value, your app will run heavily).
//7: Maximum possible object size. Objects larger than that are ignored. Both minimum and maximum should be set carefully to avoid slow running of the app.
Rect[] facesArray = faces.toArray(); //array of faces
for (int i = 0; i < facesArray.length; i++) {
/* Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(),
FACE_RECT_COLOR, 3);*/
//Now draw rectangles around the obtained faces, and a circle at each rectangle center.
//mrgba in the line bellow means that the rectangle should be drawn on the colored img.
//facesArray[i].tl() returns a Point: Template class for 2D points specified by its coordinates x and y -> Template class
// facesArray[i].x and facesArray[i].y are the x and y coords of the top left top corner.
Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
//calculate the center in x and y coords.
xCenter = (facesArray[i].x + facesArray[i].width + facesArray[i].x) / 2;
yCenter = (facesArray[i].y + facesArray[i].y + facesArray[i].height) / 2;
Point center = new Point(xCenter, yCenter); //store the center.
//Imgproc.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3);
Core.circle(mRgba, center, 10, new Scalar(255, 0, 0, 255), 3); //draw a red circle at the center of the face rectangle.
/*Imgproc.putText(mRgba, "[" + center.x + "," + center.y + "]",
new Point(center.x + 20, center.y + 20),
Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
255));*/
//write the coordinates of the rectangle center:
Core.putText(mRgba, "[" + center.x + "," + center.y + "]",
new Point(center.x + 20, center.y + 20) , // this is the bottom left corner of the text string
Core.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255,
255));
Rect r = facesArray[i]; //get the currect face, we want to use it to detect the eyes inside it.
// compute the eye area
//Rect (x, y, w, h)
Rect eyearea = new Rect(r.x + r.width / 8,
(int) (r.y + (r.height / 4.5)), r.width - 2 * r.width / 8,
(int) (r.height / 3.0));
// split it
Rect eyearea_right = new Rect(r.x + r.width / 16,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
Rect eyearea_left = new Rect(r.x + r.width / 16
+ (r.width - 2 * r.width / 16) / 2,
(int) (r.y + (r.height / 4.5)),
(r.width - 2 * r.width / 16) / 2, (int) (r.height / 3.0));
// draw the area - mGray is working grayscale mat, if you want to
// see area in rgb preview, change mGray to mRgba
/*Imgproc.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
new Scalar(255, 0, 0, 255), 2);
Imgproc.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
new Scalar(255, 0, 0, 255), 2);*/
Core.rectangle(mRgba, eyearea_left.tl(), eyearea_left.br(),
new Scalar(255, 0, 0, 255), 2);
Core.rectangle(mRgba, eyearea_right.tl(), eyearea_right.br(),
new Scalar(255, 0, 0, 255), 2);
if (learn_frames < 5) {
// no learned frames -> Learn templates from at least 5 frames..
templateR = get_template(mJavaDetectorEye, eyearea_right, 24);
templateL = get_template(mJavaDetectorEye, eyearea_left, 24);
learn_frames++;
} else {
// Learning finished, use the new templates for template
// matching
match_eye(eyearea_right, templateR, method);
match_eye(eyearea_left, templateL, method);
}
// cut eye areas and put them to zoom windows
Imgproc.resize(mRgba.submat(eyearea_left), mZoomWindow2,
mZoomWindow2.size());
Imgproc.resize(mRgba.submat(eyearea_right), mZoomWindow,
mZoomWindow.size());
}
return mRgba;
}
private void setMinFaceSize(float faceSize) {
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
}
private void CreateAuxiliaryMats() {
if (mGray.empty())
return;
int rows = mGray.rows();
int cols = mGray.cols();
if (mZoomWindow == null) {
mZoomWindow = mRgba.submat(rows / 2 + rows / 10, rows, cols / 2
+ cols / 10, cols);
mZoomWindow2 = mRgba.submat(0, rows / 2 - rows / 10, cols / 2
+ cols / 10, cols);
}
}
private void match_eye(Rect area, Mat mTemplate, int type) {
Point matchLoc;
Mat mROI = mGray.submat(area);
int result_cols = mROI.cols() - mTemplate.cols() + 1;
int result_rows = mROI.rows() - mTemplate.rows() + 1;
// Check for bad template size
if (mTemplate.cols() == 0 || mTemplate.rows() == 0) {
return ;
}
Mat mResult = new Mat(result_cols, result_rows, CvType.CV_8U);
switch (type) {
case TM_SQDIFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_SQDIFF);
break;
case TM_SQDIFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_SQDIFF_NORMED);
break;
case TM_CCOEFF:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCOEFF);
break;
case TM_CCOEFF_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCOEFF_NORMED);
break;
case TM_CCORR:
Imgproc.matchTemplate(mROI, mTemplate, mResult, Imgproc.TM_CCORR);
break;
case TM_CCORR_NORMED:
Imgproc.matchTemplate(mROI, mTemplate, mResult,
Imgproc.TM_CCORR_NORMED);
break;
}
Core.MinMaxLocResult mmres = Core.minMaxLoc(mResult);
// there is difference in matching methods - best match is max/min value
if (type == TM_SQDIFF || type == TM_SQDIFF_NORMED) {
matchLoc = mmres.minLoc;
} else {
matchLoc = mmres.maxLoc;
}
Point matchLoc_tx = new Point(matchLoc.x + area.x, matchLoc.y + area.y);
Point matchLoc_ty = new Point(matchLoc.x + mTemplate.cols() + area.x,
matchLoc.y + mTemplate.rows() + area.y);
/*Imgproc.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
255));*/
Core.rectangle(mRgba, matchLoc_tx, matchLoc_ty, new Scalar(255, 255, 0,
255));
Rect rec = new Rect(matchLoc_tx,matchLoc_ty);
}
private Mat get_template(CascadeClassifier clasificator, Rect area, int size) {
Mat template = new Mat(); //prepare a Mat which will serve as a template for eyes.
Mat mROI = mGray.submat(area); //detect only region of interest which is represented by the area. So, from the total Mat get only the submat that represent roi.
MatOfRect eyes = new MatOfRect(); //will be around eyes (including eyes), this will be filled by detectMultiScale
Point iris = new Point(); //to identify iris.
Rect eye_template = new Rect();
clasificator.detectMultiScale(mROI, eyes, 1.15, 2,
Objdetect.CASCADE_FIND_BIGGEST_OBJECT
| Objdetect.CASCADE_SCALE_IMAGE, new Size(30, 30),
new Size());
Rect[] eyesArray = eyes.toArray(); //get the detected eyes
for (int i = 0; i < eyesArray.length;) {
Rect e = eyesArray[i];
e.x = area.x + e.x; //the starting x coordinates of the rect (area) around the eye + the area
e.y = area.y + e.y;
Rect eye_only_rectangle = new Rect((int) e.tl().x,
(int) (e.tl().y + e.height * 0.4), (int) e.width,
(int) (e.height * 0.6));
mROI = mGray.submat(eye_only_rectangle);
Mat vyrez = mRgba.submat(eye_only_rectangle);
Core.MinMaxLocResult mmG = Core.minMaxLoc(mROI);
// Imgproc.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
Core.circle(vyrez, mmG.minLoc, 2, new Scalar(255, 255, 255, 255), 2);
iris.x = mmG.minLoc.x + eye_only_rectangle.x;
iris.y = mmG.minLoc.y + eye_only_rectangle.y;
eye_template = new Rect((int) iris.x - size / 2, (int) iris.y
- size / 2, size, size);
/*Imgproc.rectangle(mRgba, eye_template.tl(), eye_template.br(),
new Scalar(255, 0, 0, 255), 2);*/
Core.rectangle(mRgba, eye_template.tl(), eye_template.br(),
new Scalar(255, 0, 0, 255), 2);
template = (mGray.submat(eye_template)).clone();
return template;
}
return template;
}
public void onRecreateClick(View v)
{
learn_frames = 0;
}
}
Notice that the camera opens successfully for recording, and the xml files are loaded, but nothing happens after that. I made the window size as 100 x 100 just for testing purposes, I know it should be 1 x 1.
Can anyone please tell me how to solve this problem? How can I run opencv video camera for face and eye tracking from background service?

I tried to get the opencv camera in a service as you are doing but I was unable to get neither onCameraFrame nor onCameraViewStarted callbacks, which meant that the camera was not getting initialized. After a bunch of tries:
Setting the preview to INVISIBLE/GONE -> not working
Setting the preview size to a pixel size of 1×1 or respecting
camera's aspect ratio 4x3 ->not working
Setting the preview outside the screen -> not working
I found out that opencv camera needs to be previewed with view's size, only that way I was able to get onCameraFrame callback.
Fortunately, I could place another element on top of the camera preview to hide it, and show the alarms only.
You could find a simple CameraInService example here, hope it is useful for you.

Related

Android ImageReader YUV 420 888 Repeating Data

I am trying to convert an Image received from ImageReader using the Camera 2 API to a OpenCV matrix and display it on screen using CameraBridgeViewBase, more specifically the function deliverAndDrawFrame. The ImageFormat for the reader is YUV_420_888, which, as far as I understand, has a Y plane with grayscale values for each pixel, and a U plane that has U/V every other with 1 for every 4 pixels. However, when I try to display this image it appears as if the image is repeating and is rotated 90 degrees. The code below is supposed to put the YUV data into a OpenCV matrix (just grayscale for now, not rgba):
/**
* Takes an {#link Image} in the {#link ImageFormat#YUV_420_888} and puts it into a provided {#link Mat} in rgba format.
*
* #param yuvImage {#link Image} in the {#link ImageFormat#YUV_420_888} format.
*/
public static void yuv420888imageToRgbaMat(final Image yuvImage, final Mat rgbaMat) {
final Image.Plane
Yp = yuvImage.getPlanes()[0],
UandVp = yuvImage.getPlanes()[1];
final ByteBuffer
Ybb = Yp .getBuffer(),
UandVbb = UandVp.getBuffer();
Ybb .get(mYdata , 0, 480*640 );
UandVbb.get(mUandVData, 0, 480*640 / 2 - 8);
for (int i = 0; i < 640*480; i++) {
for (int j = 0; j < 4; j++) {
mRawRGBAFrameData[i + 640*480*j] = mYdata[i];
}
mRawRGBAFrameData[i*4 ] = mYdata[i];
mRawRGBAFrameData[i*4+1] = mYdata[i];
mRawRGBAFrameData[i*4+2] = mYdata[i];
mRawRGBAFrameData[i*4+3] = -1;
}
}
Here is my code for the OpenCV frame:
private class CameraFrame implements CvCameraViewFrame {
private Mat mRgba;
#Override
public Mat gray() {
return null;
}
#Override
public Mat rgba() {
mRgbaMat.put(0, 0, mRawRGBAFrameData);
return mRgba;
}
public CameraFrame(final Mat rgba) {
super();
mRgba = rgba;
}
}
The code for receiving drawing the frame:
private final ImageReader.OnImageAvailableListener mOnImageAvailableListener = new ImageReader.OnImageAvailableListener() {
#Override
public void onImageAvailable(ImageReader reader) {
final Image yuvImage = reader.acquireLatestImage();
yuv420888imageToRgbaMat(yuvImage, mRgbaMat);
deliverAndDrawFrame(mFrame);
yuvImage.close();
}
};
And, this is the code for making the image reader:
mRgbaMat = new Mat(mFrameHeight, mFrameWidth, CvType.CV_8UC4);
mFrame = new CameraFrame(mRgbaMat);
mImageReader = ImageReader.newInstance(mFrameWidth, mFrameHeight, ImageFormat.YUV_420_888, 1);
mImageReader.setOnImageAvailableListener(mOnImageAvailableListener, mBackgroundHandler);
AllocateCache();
This is the initialization of the arrays:
protected static byte[] mRawRGBAFrameData = new byte[640*480*4], mYdata = new byte[640*480], mUandVData = new byte[640*480 / 2];
Notes: mFrameWidth is 480 and mFrameHeight is 640. One weird thing is that the height and width for ImageReader and the Image received from it have inverted dimensions.
Here is the image with the code above: https://i.stack.imgur.com/lcdzf.png
Here is the image with this instead in yuv420888imageToRgbaMat https://i.stack.imgur.com/T2MOI.png
for (int i = 0; i < 640*480; i++) {
mRawRGBAFrameData[i] = mYdata[i];
}
We can see that data is repeating in the Y frame and for some reason this gives an actual good looking image.
For anyone having the same problem of trying to use OpenCV with the Camera 2 API, I have come up with a solution. The first thing that I discovered was the fact that there is padding in the ByteBuffer that the ImageReader supplies, so this can cause distortion in the output if you do not account for it. Another thing that I chose do to was to create my own SurfaceView and draw to it using a Bitmap instead of using CameraViewBase, and so far it has worked out great. OpenCV has a function Util.matToBitmap that takes a BGR matrix and converts it to an android Bitmap, so that has been useful. I obtain the BGR matrix by putting information from the first two Image.Planes supplied by the ImageReader into an OpenCV one channel matrix that is formatted as YUV 420, and using Imgproc.cvtColor with Imgproc.COLOR_YUV420p2BGR. The important thing to know is that the Y plane of the image has full pixels, but the second UV plane has interleaved pixels that map one to four Y pixels, so the total length of the UV plane is half of the Y plane. See here. Anyways, here is some code:
Initialization of matrices
m_BGRMat = new Mat(Constants.VISION_IMAGE_HEIGHT, Constants.VISION_IMAGE_WIDTH, CvType.CV_8UC3);
m_Yuv420FrameMat = new Mat(Constants.VISION_IMAGE_HEIGHT * 3 / 2, Constants.VISION_IMAGE_WIDTH, CvType.CV_8UC1);
Every frame:
// Convert image to YUV 420 matrix
ImageUtils.imageToMat(image, m_Yuv420FrameMat, m_RawFrameData, m_RawFrameRowData);
// Convert YUV matrix to BGR matrix
Imgproc.cvtColor(m_Yuv420FrameMat, m_BGRMat, Imgproc.COLOR_YUV420p2BGR);
// Flip width and height then mirror vertically
Core.transpose(m_BGRMat, m_BGRMat);
Core.flip(m_BGRMat, m_BGRMat, 0);
// Draw to Surface View
m_PreviewView.drawImageMat(m_BGRMat);
Here is the conversion to YUV 420 matrix:
/**
* Takes an Android {#link Image} in the {#link ImageFormat#YUV_420_888} format and returns an OpenCV {#link Mat}.
*
* #param image {#link Image} in the {#link ImageFormat#YUV_420_888} format
*/
public static void imageToMat(final Image image, final Mat mat, byte[] data, byte[] rowData) {
ByteBuffer buffer;
int rowStride, pixelStride, width = image.getWidth(), height = image.getHeight(), offset = 0;
Image.Plane[] planes = image.getPlanes();
if (data == null || data.length != width * height) data = new byte[width * height * ImageFormat.getBitsPerPixel(ImageFormat.YUV_420_888) / 8];
if (rowData == null || rowData.length != planes[0].getRowStride()) rowData = new byte[planes[0].getRowStride()];
for (int i = 0; i < planes.length; i++) {
buffer = planes[i].getBuffer();
rowStride = planes[i].getRowStride();
pixelStride = planes[i].getPixelStride();
int
w = (i == 0) ? width : width / 2,
h = (i == 0) ? height : height / 2;
for (int row = 0; row < h; row++) {
int bytesPerPixel = ImageFormat.getBitsPerPixel(ImageFormat.YUV_420_888) / 8;
if (pixelStride == bytesPerPixel) {
int length = w * bytesPerPixel;
buffer.get(data, offset, length);
// Advance buffer the remainder of the row stride, unless on the last row.
// Otherwise, this will throw an IllegalArgumentException because the buffer
// doesn't include the last padding.
if (h - row != 1)
buffer.position(buffer.position() + rowStride - length);
offset += length;
} else {
// On the last row only read the width of the image minus the pixel stride
// plus one. Otherwise, this will throw a BufferUnderflowException because the
// buffer doesn't include the last padding.
if (h - row == 1)
buffer.get(rowData, 0, width - pixelStride + 1);
else
buffer.get(rowData, 0, rowStride);
for (int col = 0; col < w; col++)
data[offset++] = rowData[col * pixelStride];
}
}
}
mat.put(0, 0, data);
}
And finally, drawing
/**
* Given an {#link Mat} that represents a BGR image, draw it on the surface canvas.
* use the OpenCV helper function {#link Utils#matToBitmap(Mat, Bitmap)} to create a {#link Bitmap}.
*
* #param bgrMat BGR frame {#link Mat}
*/
public void drawImageMat(final Mat bgrMat) {
if (m_HolderReady) {
// Create bitmap from BGR matrix
Utils.matToBitmap(bgrMat, m_Bitmap);
// Obtain the canvas and draw the bitmap on top of it
final SurfaceHolder holder = getHolder();
final Canvas canvas = holder.lockCanvas();
canvas.drawBitmap(m_Bitmap, null, new Rect(0, 0, m_HolderWidth, m_HolderHeight), null);
holder.unlockCanvasAndPost(canvas);
}
}
This way works, but I imagine the best way to do it is to set up an OpenGL rendering context and write some sort of simple shader to display the matrix.

not detecting filled circle, showing empty circle instead- Opencv

I am new to OpenCV and trying to make omr scanner from scratch and have snippet which is supposed to detect filled circles but it is doing quite opposite and detecting unfilled circle. Please show me my mistake in the code.
public void showFilledCircles(Bitmap paramView)
{
paramView = BitmapFactory.decodeFile(filename);
Mat localMat1 = new Mat();
Utils.bitmapToMat(paramView, localMat1);
Object localObject1 = new Mat();
double[] lo;
Imgproc.GaussianBlur(localMat1, (Mat)localObject1, new Size(3.0D, 3.0D), 3.0D, 2.5D);
Mat localMat2 = new Mat();
Imgproc.cvtColor((Mat)localObject1, localMat2, 7);
localObject1 = new ArrayList();
Object localObject2 = new Mat();
Mat localMat3 = new Mat();
Imgproc.Canny(localMat2, localMat3, 140.0D, 255.0D);
Imgproc.findContours(localMat3, (List)localObject1, (Mat)localObject2,1,2);
int i = 0;
while (i < ((List)localObject1).size())
{
Imgproc.drawContours(localMat2, (List)localObject1, i, new Scalar(0.0D, 0.0D, 255.0D), 2);
//Log.i("Local Objects","Local Object Point -------------------"+localMat2);
i += 1;
}
localObject1 = new Mat();
Core.inRange(localMat2, new Scalar(70.0D, 70.0D, 70.0D), new Scalar(255.0D, 255.0D, 255.0D), (Mat)localObject1);
localMat2 = localMat1.clone();
Imgproc.HoughCircles((Mat)localObject1, localMat2, 3, 1.0D, 20.0D, 40.0D, 10.0D, 6, 18);
i = 0;
for (;;)
{
if (i < localMat2.cols())
{
localObject1 = localMat2.get(0, i);
lo = localMat2.get(0, i);
if (localObject1 != null) {}
}
else
{
Utils.matToBitmap(localMat1, paramView);
this.imageView.setImageBitmap(paramView);
//this.imageView.setRotation(90.0F);
return;
}
localObject2 = new Point(Math.round(lo[0]), Math.round(lo[1]));
int j = (int)Math.round(lo[2]);
Log.i("cicle Points ---------", localObject2 + " radius " + j);
Imgproc.circle(localMat1, (Point)localObject2, 1, new Scalar(0.0D, 0.0D, 255.0D), 5);
Imgproc.circle(localMat1, (Point)localObject2, j, new Scalar(255.0D, 0.0D, 0.0D), 5);
i += 1;
}
}
output image
for more precise detection of filled circle.
step 1: detect contours on image
step 2: create rectangle around detected contours.
step 3: depending on rectangle height and width choose only those contours which you want.
for filled circle detection refer to this question
Detect filled circle using opencv4Android

Android: Shape detection with JavaCV

I am new to JavaCV. I am trying to detect largest rectangle in image and outline it with color over original image. I am posting code below which I have tried but it is not working. I am getting edgeDetectedImage properly. I am getting 4 corner points properly. Just cvDrawLine is not working. Please Help if I am missing anything:
OnClick of button I am processing image and showing it again on ImageView.
In onClickListener of button:
if ((new File(path + "trial.jpg")).exists()) {
opencv_core.IplImage originalImage = opencv_imgcodecs.cvLoadImage(path + "trial.jpg", opencv_imgcodecs.CV_IMWRITE_JPEG_QUALITY);
opencv_core.IplImage iplImage = opencv_imgcodecs.cvLoadImage(path + "trial.jpg", opencv_imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
opencv_core.IplImage edgeDetectedImage = applyCannyRectangleEdgeDetection(iplImage, 80);
opencv_core.CvSeq largestContour = findLargestContour(edgeDetectedImage);
opencv_core.CvPoint[] cvPoints = new opencv_core.CvPoint[4];
for(int i=0; i<largestContour.total();i++)
{
opencv_core.CvPoint cvPoint = new opencv_core.CvPoint(cvGetSeqElem(largestContour, i));
cvPoints[i] = cvPoint;
}
cvDrawLine(originalImage, cvPoints[0], cvPoints[1], opencv_core.CvScalar.YELLOW, 10, 10, 10);
cvDrawLine(originalImage, cvPoints[1], cvPoints[2], opencv_core.CvScalar.YELLOW, 10, 10, 10);
cvDrawLine(originalImage, cvPoints[2], cvPoints[3], opencv_core.CvScalar.YELLOW, 10,10, 10);
cvDrawLine(originalImage, cvPoints[3], cvPoints[0], opencv_core.CvScalar.YELLOW, 10, 10,10);
opencv_imgcodecs.cvSaveImage(path + "img1.jpg", originalImage);
if ((new File(path + "img1.jpg").exists())) {
imageView.setImageDrawable(Drawable.createFromPath(path + "img1.jpg"));
}
}
Method applyCannyRectangleEdgeDetection(IplImage, int):
private opencv_core.IplImage applyCannyRectangleEdgeDetection(opencv_core.IplImage iplImage, int percent) {
opencv_core.IplImage destImage = downScaleImage(iplImage, percent);
OpenCVFrameConverter.ToMat converterToMat = new OpenCVFrameConverter.ToMat();
Frame grayImageFrame = converterToMat.convert(destImage);
opencv_core.Mat grayImageMat = converterToMat.convertToMat(grayImageFrame);
GaussianBlur(grayImageMat, grayImageMat, new opencv_core.Size(5, 5), 0.0, 0.0, BORDER_DEFAULT);
destImage = converterToMat.convertToIplImage(grayImageFrame);
cvErode(destImage, destImage);
cvDilate(destImage, destImage);
cvCanny(destImage, destImage, 20, 55);
return destImage;
}
Method downScaleImage(IplImage, int)
private opencv_core.IplImage downScaleImage(opencv_core.IplImage srcImage, int percent) {
opencv_core.IplImage destImage = cvCreateImage(cvSize((srcImage.width() * percent) / 100, (srcImage.height() * percent) / 100), srcImage.depth(), srcImage.nChannels());
cvResize(srcImage, destImage);
return destImage;
}
Method findLargestContour(IplImage)
private opencv_core.CvSeq findLargestContour(opencv_core.IplImage edgeDetectedImage) {
opencv_core.IplImage foundContoursOfImage = cvCloneImage(edgeDetectedImage);
opencv_core.CvMemStorage memory = new opencv_core.CvMemStorage().create();
opencv_core.CvSeq contours = new opencv_core.CvSeq();
cvFindContours(foundContoursOfImage, memory, contours, Loader.sizeof(opencv_core.CvContour.class), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, new opencv_core.CvPoint(0, 0));
int maxWidth = 0;
int maxHeight = 0;
opencv_core.CvRect contr = null;
opencv_core.CvSeq seqFound = null;
opencv_core.CvSeq nextSeq;
for (nextSeq = contours; nextSeq != null; nextSeq = nextSeq.h_next()) {
contr = cvBoundingRect(nextSeq, 0);
if ((contr.width() >= maxWidth) && (contr.height() >= maxHeight)) {
maxHeight = contr.height();
maxWidth = contr.width();
seqFound = nextSeq;
}
}
opencv_core.CvSeq result = cvApproxPoly(seqFound, Loader.sizeof(opencv_core.CvContour.class), memory, CV_POLY_APPROX_DP, cvContourPerimeter(seqFound) * 0.1, 0);
return result;
}
Sorry this should be in comments but I don't have enough reputation. What I can see from your code is that the canny is applied on a downscaled image and so is the contour. You are drawing the lines on the original image (which isn't downscaled by percent) so naturally it wouldn't look correct (if it isn't looking correct but something is being drawn). Otherwise, you should mention the color space of the image, it doesn't matter for drawing but does for canny.

Use RenderScript to emboss a shape in android

This question is base on link.
I tried out #miloslaw-smyk answer. However I could not get it to work. I am not sure what createPath(1) means. I am not sure how to create a path with a certain stroke width. We can do that using the fillpaint. Anyway below I have shown the complete code.Problem is I don't see any emboss effect shown by the original link (see output image below). Please let me know what I have done wrong. (I am using targetSdkVersion 23 and device is on updated 4.1.2 android)
private Bitmap puzzelImage; // screen size image
private Bitmap mBitmapIn;
private Bitmap mBitmapPuzzle;
private RenderScript mRS;
private Allocation mInAllocation;
private Allocation mPuzzleAllocation;
private Allocation mCutterAllocation;
private Allocation mOutAllocation;
private Allocation mOutAllocation2;
private Allocation mAllocationHist;
private ScriptIntrinsicBlur mScriptBlur;
private ScriptIntrinsicBlend mScriptBlend;
private ScriptIntrinsicHistogram mScriptHistogram;
private ScriptIntrinsicLUT mScriptLUT;
public Activity ctx;
private int bw = 780;
private int bh = 780; Path path2;
private void init() {
if (puzzel.mybitmap == null)
return;
bw = puzzelImage.getWidth();
bh = puzzelImage.getHeight();
mBitmapIn = puzzelImage ;
mBitmapPuzzle = Bitmap.createBitmap(bw, bh, Bitmap.Config.ARGB_8888); // this will hold the puzzle
Canvas c = new Canvas(mBitmapPuzzle);
createPath();
//path2 = path1;
fillPaint.setStrokeWidth(5);
c.drawPath(path2, fillPaint); // draw it on canvas
createScript(); // get renderscripts and Allocations ready
// Apply gaussian blur of radius 25 to our drawing
mScriptBlur.setRadius(25);
mScriptBlur.setInput(mPuzzleAllocation);
mScriptBlur.forEach(mOutAllocation);
// Now apply the blur of radius 1
mScriptBlur.setRadius(1);
mScriptBlur.setInput(mPuzzleAllocation);
mScriptBlur.forEach(mOutAllocation2);
// Subtract one blur result from another
mScriptBlend.forEachSubtract(mOutAllocation, mOutAllocation2);
// We now want to normalize the result (e.g. make it use full 0-255 range).
// To do that, we will first compute the histogram of our image
mScriptHistogram.setOutput(mAllocationHist);
mScriptHistogram.forEach(mOutAllocation2);
// copy the histogram to Java array...
int []hist = new int[256 * 4];
mAllocationHist.copyTo(hist);
// ...and walk it from the end looking for the first non empty bin
int i;
for(i = 255; i > 1; i--)
if((hist[i * 4] | hist[i * 4 + 1] | hist[i * 4 + 2]) != 0)
break;
// Now setup the LUTs that will map the image to the new, wider range.
// We also use the opportunity to inverse the image ("255 -").
for(int x = 0; x <= i; x++)
{
int val = 255 - x * 255 / i;
mScriptLUT.setAlpha(x, 255); // note we always make it fully opaque
mScriptLUT.setRed(x, val);
mScriptLUT.setGreen(x, val);
mScriptLUT.setBlue(x, val);
}
// the mapping itself.
mScriptLUT.forEach(mOutAllocation2, mOutAllocation);
Bitmap mBitmapCutter = Bitmap.createBitmap(bw, bh, Bitmap.Config.ARGB_8888);
c = new Canvas(mBitmapCutter);
createPath();
fillPaint.setStrokeWidth(1);
c.drawPath(path2, fillPaint);
mCutterAllocation = Allocation.createFromBitmap(mRS, mBitmapCutter);
// cookie cutter now
mScriptBlend.forEachDstIn(mCutterAllocation, mOutAllocation);
mScriptBlend.forEachMultiply(mOutAllocation, mInAllocation);
mInAllocation.copyTo(mBitmapPuzzle);
}
private void createScript() {
try {
mRS = RenderScript.create(ctx);
mPuzzleAllocation = Allocation.createFromBitmap(mRS, mBitmapPuzzle);
// three following allocations could actually use createSized(),
// but the code would be longer.
mInAllocation = Allocation.createFromBitmap(mRS, mBitmapIn);
mOutAllocation = Allocation.createFromBitmap(mRS, mBitmapPuzzle);
mOutAllocation2 = Allocation.createFromBitmap(mRS, mBitmapPuzzle);
mAllocationHist = Allocation.createSized(mRS, Element.I32_3(mRS), 256);
mScriptBlur = ScriptIntrinsicBlur.create(mRS, Element.U8_4(mRS));
mScriptBlend = ScriptIntrinsicBlend.create(mRS, Element.U8_4(mRS));
mScriptHistogram = ScriptIntrinsicHistogram.create(mRS, Element.U8_4(mRS));
mScriptLUT = ScriptIntrinsicLUT.create(mRS, Element.U8_4(mRS));
}catch (Exception e)
{
}
}
public void createPath()
{
path2 = new Path();
//path 1 samll one
Point[] araay = new Point[]{new Point(144,320),new Point(109,200), new Point(171,308),new Point(178,240),new Point(171,172),new Point(109,282),new Point(144,160)};
AddBeziers(path2, araay, 320, 144);
AddLine(path2, 216, 144 );
AddLine(path2, 216, 216 );
AddLine(path2, 144, 320);
fillPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
fillPaint.setColor(Color.WHITE);
fillPaint.setFlags(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
fillPaint.setAntiAlias(true);
fillPaint.setDither(true);
fillPaint.setStrokeJoin(Paint.Join.ROUND);
fillPaint.setStrokeCap(Paint.Cap.ROUND);
fillPaint.setStyle(Paint.Style.FILL_AND_STROKE);
}
protected Path AddLine(Path path, int endX, int endY) {
//path.moveTo(startX, startY);
path.lineTo(endX, endY);
return path;
}
protected Path AddBeziers(Path path, Point[] points, int lastX, int lastY) {
if (points[0].X != lastX && points[0].Y != lastY)
path.moveTo(points[0].X, points[0].Y);
int index = 1;
path.cubicTo(points[index].X, points[index].Y, points[index + 1].X,
points[index + 1].Y, points[index + 2].X, points[index + 2].Y);
index = index + 3;
path.cubicTo(points[index].X, points[index].Y, points[index + 1].X,
points[index + 1].Y, points[index + 2].X, points[index + 2].Y);
return path;
/*pointsCounter = points.length;
//point = new PointNew(new PointF(points[1].X, points[1].Y));
prev = new PointNew(new PointF(points[0].X, points[0].Y));
//next = new PointNew(new PointF(points[2].X, points[2].Y));
for (int i =1; i < points.length; i++)
appendToPath(path, new PointF(points[i].X, points[i].Y), null);
return path;*/
}
#Override
protected void onDraw(Canvas canvas) {
canvas.drawBitmap(mBitmapPuzzle, 0, 0, fillPaint);
super.onDraw(canvas);
}
Can you try with my version of createPath()? I modified it slightly to draw larger puzzle and to accept stroke width as an argument.
public void createPath(int strokeWidth)
{
//path 2 Big one
Point[]araay = new Point[]{new Point(144,320),new Point(109,200), new Point(171,308),new Point(178,240),new Point(171,172),new Point(109,282),new Point(144,160)};
Point[]braay = new Point[araay.length];
int idx = 6;
for(Point p : araay)
braay[idx--] = new Point((200 + p.x), p.y);
path2.moveTo(144,320);
AddBeziers(path2, araay, 320, 144);
AddLine(path2, 216, 144);
AddBeziers(path2, braay, 320, 144);
AddLine(path2, 144, 320);
path2.close();
Matrix m = new Matrix();
m.setScale(2, 2);
path2.transform(m);
MaskFilter mEmboss = new EmbossMaskFilter(new float[] { 1, 1, 1 }, 0.4f, 6, 3.5f);
fillPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
fillPaint.setColor(Color.WHITE);
fillPaint.setFlags(Paint.ANTI_ALIAS_FLAG | Paint.DITHER_FLAG);
fillPaint.setAntiAlias(true);
fillPaint.setDither(true);
fillPaint.setStrokeJoin(Paint.Join.ROUND);
fillPaint.setStrokeCap(Paint.Cap.ROUND);
fillPaint.setStrokeWidth(strokeWidth);
fillPaint.setStyle(Paint.Style.FILL_AND_STROKE);
fillPaint.setStrokeMiter(0);
}

AndEngine Chase Camera Not Following Body

I'm having a hard time making the chase camera follow the a car body. I am tinkering the Racer Game example project. The Tile Map is 1024 x 786 and the Camera is set to chase the Car Body. Here's the code:
#Override
public Scene onCreateScene() {
this.mEngine.registerUpdateHandler(new FPSLogger());
this.mScene = new Scene();
//this.mScene.setBackground(new Background(0, 0, 0));
/** Tiled Map Test **/
try {
final TMXLoader tmxLoader = new TMXLoader(this.getAssets(), this.mEngine.getTextureManager(), TextureOptions.BILINEAR_PREMULTIPLYALPHA,
this.getVertexBufferObjectManager(), new ITMXTilePropertiesListener() {
#Override
public void onTMXTileWithPropertiesCreated(final TMXTiledMap pTMXTiledMap, final TMXLayer pTMXLayer, final TMXTile pTMXTile,
final TMXProperties<TMXTileProperty> pTMXTileProperties) {
/* We are going to count the tiles that have the property "box=true" or "boxBool=true" set. */
if(pTMXTileProperties.containsTMXProperty("box", "true")) {
SpeedsterGameActivity.this.numBoxes++;
}
}
});
// Load the TMX file into an Object
this.mTMXTiledMap = tmxLoader.loadFromAsset("tmx/level3.tmx");
this.runOnUiThread(new Runnable() {
#Override
public void run() {
Toast.makeText( SpeedsterGameActivity.this, "Box count in this TMXTiledMap: " + SpeedsterGameActivity.this.numBoxes, Toast.LENGTH_LONG).show();
}
});
} catch (final TMXLoadException e) {
Debug.e(e);
}
// Get the first TMX Layer and add it to the scene
final TMXLayer tmxLayer = this.mTMXTiledMap.getTMXLayers().get(0);
this.mScene.attachChild(tmxLayer);
/* Make the camera not exceed the bounds of the TMXEntity. */
this.mBoundChaseCamera.setBounds(0, 0, tmxLayer.getHeight(), tmxLayer.getWidth());
this.mBoundChaseCamera.setBoundsEnabled(true);
/* Debugging stuff */
Debug.i( "Game Info", "Height & Width: " + tmxLayer.getHeight() + " x " + tmxLayer.getWidth() );
int[] maxTextureSize = new int[1];
GLES20.glGetIntegerv( GLES20.GL_MAX_TEXTURE_SIZE, maxTextureSize, 0);
Debug.i("Game Info", "Max texture size = " + maxTextureSize[0]);
/**********/
/* Calculate the coordinates for the face, so its centered on the camera. */
final float centerX = (CAMERA_WIDTH - this.mVehiclesTextureRegion.getWidth()) / 2;
final float centerY = (CAMERA_HEIGHT - this.mVehiclesTextureRegion.getHeight()) / 2;
/* Create the sprite and add it to the scene. */
final AnimatedSprite player = new AnimatedSprite(centerX, centerY, this.mVehiclesTextureRegion, this.getVertexBufferObjectManager());
this.mBoundChaseCamera.setChaseEntity(player);
/********************/
this.mPhysicsWorld = new FixedStepPhysicsWorld(30, new Vector2(0, 0), false, 8, 1);
//this.initRacetrack();
//this.initRacetrackBorders();
this.initCar();
this.initObstacles();
this.initOnScreenControls();
this.mScene.registerUpdateHandler(this.mPhysicsWorld);
}
A possible cause of the problem is that your camera size is 1024x786 too, therefore the full camera rectangle is shown and since you enabled bounds, the camera does not follow the car.
Omit the line this.mBoundChaseCamera.setBoundsEnabled(true);.
Another problem is - the camera follows the player object to which you lose the reference once onCreateScene finishes executing. You are not connecting the player object to a physics body using PhysicsConnector class, so it has no reason to move.
Otherwise if the car body & entity are created in initCarmethod, you are not setting the car as the chase entity.

Categories

Resources