Can I call static method from Activity if Activity is destroyed? - android

In Xamarin.Android if an Activity gets killed because of low memory can I still call static methods defined in that Activity from another Activity. For example:
public class MyKilledActivity : Activity
{
....
public static int MyStaticMethod()
{
.....
return someIntValue;
}
}
public class AnotherActivity : Activity
{
.....
int value = MyKilledActivity.MyStaticMethod(); // Would it work if MyKilledActivity is destroyed?
}

You can always call a static method on any accessible class at any time. Just use MyClass.staticMethod(). Note that you can't call deadInstanceOfMyClass.staticMethod() this way if deadInstanceOfMyClass == null.

Can I call static method from Activity if Activity is destroyed?
Just as SushiHangover said, the answer is Yes.
In Xamarin.Android if an Activity gets killed because of low memory can I still call static methods defined in that Activity from another Activity?
Please note that Android doesn't kill single activities, Android kills processes.
Processes are roughly an app and everything in that app- all the activities, services, application class related to that particular app, in most cases one app equals one process.
That means, that if Android trimmed a process, all the activities (and everything else related to that app) inside it will also die as a result. Android (and in particular, the Android Kernel which is responsible for killing processes when reaching certain memory thresholds) doesn't trim single components within that process/ within that app, it doesn't even know or care that they exist.
So if your app is killed via system because of low memory, then, all your Activity will be destroyed.

Yes, assuming someIntValue is either static or a hardcoded Integer value.

Related

Change activity variables from another activity/Service

Following solutions are mostly suggested to do this:
using Intent like here
using Handler like here
using SharedPreferences like here
Question
What is the problem of defining a public method to set the variable like:
public class Activity1 {
private int var1;
public void setVar1(int val){
var1=val;
}
}
and in Activity2:
public class Activity2 {
Activity1.setVar1(4);
}
It seems that it is applicable for both static and non-static variables
EDIT1:
It is a simple case of my current project. In original case, the Activity2 connects to a bluetooth Hub and receives data of several sensors. If the values are changed, it should pass the changed values (and off course sensor ID's) to Activity1 which is responsible for updating UI. The number of sensors can be more than 100 and update period is in range of 100 msec, which means a runnable reads the incomming BT messages each 100 msec and checks changes.
EDIT2:
BroadcastReceiver is also solution. But the question is: Whats wrong with defining a set method to change/update a variable. Is this method inefficient in terms of memory? Does it makes the app slow? Is it an inappropriate code?
I just wanna know what kind of problems/inefficiencies I would face if I define set methods to change activity variables.
keep in mind that an Activity instance is itself a Context, and that these can be very heavy in terms of the amount of memory they occupy because they keep a reference to the Activity's view hierarchy and all its associated resources. retaining long-lived references to Activity instances is a common source of memory leaks.
keeping that in mind, in this particular setup:
public class Activity1 {
private int var1;
public void setVar1(int val){
var1=val;
}
}
...invoking activity1.setVar1(...) would imply that the running instance of Activity2 has a reference to an instance of Activity1, meaning the system hasn't been allowed to garbage collect it. this pattern could eventually lead to the application exhausting its heap and crashing.
you also inquired about the possibility of exposing these methods as static methods. while you'd avoid the aforementioned problem, one potential pitfall here is if a user switches to another application, and the system is running low on memory, your application process could be killed by the system. as static variables are tied to the running process instance, when the user returns to your application and the system restores its state, var1 would be reset to it's default value (zero). (you could probably mitigate this by hooking into the lifecycle methods to save values into a Bundle instance, etc).
those are some reasons i can think of to avoid writing getters/setters into your Activity's interface.
Having reference to another activity is not a good way to do it since each activity has it own life cycle. The activity that you are referring to probably get get destroyed or the system might already start a new instance of that activity whilst you still reference to the old one.
Alternatively, you can use event bus (Otto for example) to publish object/event to another activity.

Why extend the Android Application class?

An extended Application class can declare global variables. Are there other reasons?
Introduction:
If we consider an apk file in our mobile, it is comprised of
multiple useful blocks such as, Activitys, Services and
others.
These components do not communicate with each other regularly and
not forget they have their own life cycle. which indicate that
they may be active at one time and inactive the other moment.
Requirements:
Sometimes we may require a scenario where we need to access a
variable and its states across the entire Application regardless of
the Activity the user is using,
An example is that a user might need to access a variable that holds his
personnel information (e.g. name) that has to be accessed across the
Application,
We can use SQLite but creating a Cursor and closing it again and
again is not good on performance,
We could use Intents to pass the data but it's clumsy and activity
itself may not exist at a certain scenario depending on the memory-availability.
Uses of Application Class:
Access to variables across the Application,
You can use the Application to start certain things like analytics
etc. since the application class is started before Activitys or
Servicess are being run,
There is an overridden method called onConfigurationChanged() that is
triggered when the application configuration is changed (horizontal
to vertical & vice-versa),
There is also an event called onLowMemory() that is triggered when
the Android device is low on memory.
Application class is the object that has the full lifecycle of your application. It is your highest layer as an application. example possible usages:
You can add what you need when the application is started by overriding onCreate in the Application class.
store global variables that jump from Activity to Activity. Like Asynctask.
etc
Sometimes you want to store data, like global variables which need to be accessed from multiple Activities - sometimes everywhere within the application. In this case, the Application object will help you.
For example, if you want to get the basic authentication data for each http request, you can implement the methods for authentication data in the application object.
After this,you can get the username and password in any of the activities like this:
MyApplication mApplication = (MyApplication)getApplicationContext();
String username = mApplication.getUsername();
String password = mApplication.getPassword();
And finally, do remember to use the Application object as a singleton object:
public class MyApplication extends Application {
private static MyApplication singleton;
public MyApplication getInstance(){
return singleton;
}
#Override
public void onCreate() {
super.onCreate();
singleton = this;
}
}
For more information, please Click Application Class
Offhand, I can't think of a real scenario in which extending Application is either preferable to another approach or necessary to accomplish something. If you have an expensive, frequently used object you can initialize it in an IntentService when you detect that the object isn't currently present. Application itself runs on the UI thread, while IntentService runs on its own thread.
I prefer to pass data from Activity to Activity with explicit Intents, or use SharedPreferences. There are also ways to pass data from a Fragment to its parent Activity using interfaces.
The Application class is a singleton that you can access from any activity or anywhere else you have a Context object.
You also get a little bit of lifecycle.
You could use the Application's onCreate method to instantiate expensive, but frequently used objects like an analytics helper. Then you can access and use those objects everywhere.
Best use of application class.
Example: Suppose you need to restart your alarm manager on boot completed.
public class BaseJuiceApplication extends Application implements BootListener {
public static BaseJuiceApplication instance = null;
public static Context getInstance() {
if (null == instance) {
instance = new BaseJuiceApplication();
}
return instance;
}
#Override
public void onCreate() {
super.onCreate();
}
#Override
public void onBootCompleted(Context context, Intent intent) {
new PushService().scheduleService(getInstance());
//startToNotify(context);
}
Not an answer but an observation: keep in mind that the data in the extended application object should not be tied to an instance of an activity, as it is possible that you have two instances of the same activity running at the same time (one in the foreground and one not being visible).
For example, you start your activity normally through the launcher, then "minimize" it. You then start another app (ie Tasker) which starts another instance of your activitiy, for example in order to create a shortcut, because your app supports android.intent.action.CREATE_SHORTCUT. If the shortcut is then created and this shortcut-creating invocation of the activity modified the data the application object, then the activity running in the background will start to use this modified application object once it is brought back to the foreground.
I see that this question is missing an answer. I extend Application because I use Bill Pugh Singleton implementation (see reference) and some of my singletons need context. The Application class looks like this:
public class MyApplication extends Application {
private static final String TAG = MyApplication.class.getSimpleName();
private static MyApplication sInstance;
#Contract(pure = true)
#Nullable
public static Context getAppContext() {
return sInstance;
}
#Override
public void onCreate() {
super.onCreate();
Log.d(TAG, "onCreate() called");
sInstance = this;
}
}
And the singletons look like this:
public class DataManager {
private static final String TAG = DataManager.class.getSimpleName();
#Contract(pure = true)
public static DataManager getInstance() {
return InstanceHolder.INSTANCE;
}
private DataManager() {
doStuffRequiringContext(MyApplication.getAppContext());
}
private static final class InstanceHolder {
#SuppressLint("StaticFieldLeak")
private static final DataManager INSTANCE = new DataManager();
}
}
This way I don't need to have a context every time I'm using a singleton and get lazy synchronized initialization with minimal amount of code.
Tip: updating Android Studio singleton template saves a lot of time.
I think you can use the Application class for many things, but they are all tied to your need to do some stuff BEFORE any of your Activities or Services are started.
For instance, in my application I use custom fonts. Instead of calling
Typeface.createFromAsset()
from every Activity to get references for my fonts from the Assets folder (this is bad because it will result in memory leak as you are keeping a reference to assets every time you call that method), I do this from the onCreate() method in my Application class:
private App appInstance;
Typeface quickSandRegular;
...
public void onCreate() {
super.onCreate();
appInstance = this;
quicksandRegular = Typeface.createFromAsset(getApplicationContext().getAssets(),
"fonts/Quicksand-Regular.otf");
...
}
Now, I also have a method defined like this:
public static App getAppInstance() {
return appInstance;
}
and this:
public Typeface getQuickSandRegular() {
return quicksandRegular;
}
So, from anywhere in my application, all I have to do is:
App.getAppInstance().getQuickSandRegular()
Another use for the Application class for me is to check if the device is connected to the Internet BEFORE activities and services that require a connection actually start and take necessary action.
Source: https://github.com/codepath/android_guides/wiki/Understanding-the-Android-Application-Class
In many apps, there's no need to work with an application class directly. However, there are a few acceptable uses of a custom application class:
Specialized tasks that need to run before the creation of your first activity
Global initialization that needs to be shared across all components (crash reporting, persistence)
Static methods for easy access to static immutable data such as a shared network client object
You should never store mutable instance data inside the Application object because if you assume that your data will stay there, your application will inevitably crash at some point with a NullPointerException. The application object is not guaranteed to stay in memory forever, it will get killed. Contrary to popular belief, the app won’t be restarted from scratch. Android will create a new Application object and start the activity where the user was before to give the illusion that the application was never killed in the first place.
To add onto the other answers that state that you might wish store variables in the application scope, for any long-running threads or other objects that need binding to your application where you are NOT using an activity (application is not an activity).. such as not being able to request a binded service.. then binding to the application instance is preferred. The only obvious warning with this approach is that the objects live for as long as the application is alive, so more implicit control over memory is required else you'll encounter memory-related problems like leaks.
Something else you may find useful is that in the order of operations, the application starts first before any activities. In this timeframe, you can prepare any necessary housekeeping that would occur before your first activity if you so desired.
2018-10-19 11:31:55.246 8643-8643/: application created
2018-10-19 11:31:55.630 8643-8643/: activity created
You can access variables to any class without creating objects, if its extended by Application. They can be called globally and their state is maintained till application is not killed.
The use of extending application just make your application sure for any kind of operation that you want throughout your application running period. Now it may be any kind of variables and suppose if you want to fetch some data from server then you can put your asynctask in application so it will fetch each time and continuously, so that you will get a updated data automatically.. Use this link for more knowledge....
http://www.intridea.com/blog/2011/5/24/how-to-use-application-object-of-android

Main data model on android

I have an android application with a number of activities.
I have a singleton class holding my main data model which all activities access to get data.
The problem is that sometimes the android GC decides to destroy my singleton when the app in the background (when you press the home button).
Is there anyway that I can bypass this?
I've had this exact problem in a current application of mine, which needs to retain a large amount of data in various 'singleton' classes. The problem I encountered was as in your case; i.e. sometimes when bringing the application back to the foreground, some of the static 'singleton' classes have been destroyed.
The problem, I believe, is that the 'lifetime' of such classes can never be well defined or predicted. After all, it's a class sat there holding a reference to itself, so it's susceptible to being garbage collected when the system wants to grab some resources.
You're probably already aware that extending android.app.Application is a well-known alternative to using conventional Singletons. The solution that worked for me is to hold the actual instances of data singleton classes within an extension class of android.app.Application, whose lifecycle is well defined. Any other class that wants to access those singletons can obtain them using a getter in the Application class.
So for example I have a class called AppState that extends Application, that holds the instances within:
import android.app.Application;
public class AppState extends Application {
...
// "Singleton" instances that this Application extension looks after
private MSData singletonInstanceMSData;
public AppState() {
...
singletonInstanceMSData = new MSData();
...
// ---------------- Singleton instance control ----------------
public MSData getMSData(){
return singletonInstanceMSData;
}
// I also provide the means to 'reset' the instances on startup (this is
// something I need to do for my application - you may or may not need to)
public void resetControllerSpecificData(){
singletonInstanceMSData.reset();
...
Don't forget you'll need to modify your manifest if you extend Application.
AFAIR, lifespan os singleton is lifespan of his classloader - also complete VM . When user hit home button, your application goes in backgorund and is probably destroyed - you can not do anything against it. Your best bet is to save whatever is necessary in your onPause() callback ( or just use write through in every change of datza if you really paranoid )

Android: is it possible to refer to an Activity from a 2nd Activity?

This is a pretty simple question, but I have been unable to find anyway to accomplish what I am trying to do...
I want to launch a new Activity to display some complex information. Because of the complexity, it is undesirable to serialize the information into the intent's parameters. Is it possible for the the new Activity to get a reference to the launching activity, so it can call its methods?
If you use a custom application class, you can store information that will be kept between the activities.
See a tutorial here for instance.
The lifetime of an Activity cannot be depended upon. In this case, one way of sharing data is to have a singleton which holds the data to be shared between the two activities.
You can add a public static field to the first activity containing this (the first activity).
But beware that the first activity could be destroyed by Android while you are using the second activity, so you will have to implement a fallback method if the first activity is destroyed.
And don’t forget to unset the public static variable in the onDestroy() callback of the first activity or you will leak memory.
Is it possible for the the new Activity to get a reference to the launching activity, so it can call its methods?
Please do not do that. Android can and will destroy activities to free up memory.
Complex information like you describe should not be owned by an activity. It should be held in a central data model, like you would in any other application. Whether that central data model is mediated by a Service or a singleton or a custom Application object depends a bit on the type of data, caching models, risks of memory leaks, and so on.
You can make your complex objects public and static in ActivityA, and access them in ActivityB like this:
MyCustomObjectType complexFromA = ActivityA.complexObject;
this will work, however while in ActivityB, you can't always be sure that static objects from ActivityA will exist(they may be null) since Android may terminate your application.
so then maybe add some null checking:
if(null == ActivityA.complexObject) {
//go back to ActivityA, or do something else since the object isn't there
}
else {
//business as usual, access the object
MyCustomObjectType complexFromA = ActivityA.complexObject;
}
You could also use a Singleton object which extends Application. You would have the same problem when Android terminates your application. always need to check if the object actually exists. Using the Singleton extending Application approach seems to be the more organized way - but adds more complexity to implementation. just depends what you need to do and whatever works for your implementation.
You should create a separate class that both the activities can use.
public class HelperClass{
public void sharedFunction(){
//implement function here
}
}
I would recommend staying away from static variable in android. It can cause some unexpected behavior.
Use getParent() from new activity and call parent's method
Android Activity call another Activity method

Using the Android Application class to persist data

I'm working on a fairly complex Android application that requires a somewhat large amount of data about the application (I'd say a total of about 500KB -- is this large for a mobile device?). From what I can tell, any orientation change in the application (in the activity, to be more precise) causes a complete destruction and recreation of the activity. Based on my findings, the Application class does not have the same life-cycle (i.e. it is, for all intents and purposes, always instantiated). Does it make sense to store the state information inside of the application class and then reference it from the Activity, or is that generally not the "acceptable" method due to memory constraints on mobile devices? I really appreciate any advice on this topic. Thanks!
I don't think 500kb will be that big of a deal.
What you described is exactly how I tackled my problem of losing data in an activity. I created a global singleton in the Application class and was able to access it from the activities I used.
You can pass data around in a Global Singleton if it is going to be used a lot.
public class YourApplication extends Application
{
public SomeDataClass data = new SomeDataClass();
}
Then call it in any activity by:
YourApplication appState = ((YourApplication)this.getApplication());
appState.data.UseAGetterOrSetterHere(); // Do whatever you need to with the data here.
I discuss it here in my blog post, under the section "Global Singleton."
Those who count on Application instance are wrong. At first, it may seem as though the Application exists for as long as the whole app process exists but this is an incorrect assumption.
The OS may kill processes as necessary. All processes are divided into 5 levels of "killability" specified in the doc.
So, for instance, if your app goes in the background due to the user answering to an incoming call, then depending on the state of the RAM, the OS may (or may not) kill your process (destroying the Application instance in the process).
I think a better approach would be to persist your data to internal storage file and then read it when your activity resumes.
UPDATE:
I got many negative feedbacks, so it is time to add a clarification. :) Well, initially I realy used a wrong assumption that the state is really important for the app. However if your app is OK that sometimes the state is lost (it could be some images that will be just reread/redownloaded), then it is fully OK to keep it as a member of Application.
If you want to access the "Global Singleton" outside of an activity and you don't want to pass the Context through all the involved objects to obtain the singleton, you can just define a static attribute in your application class, which holds the reference to itself. Just initialize the attribute in the onCreate() method.
For example:
public class ApplicationController extends Application {
private static ApplicationController _appCtrl;
public static ApplicationController getAppCtrl()
{
return _appCtrl;
}
}
Because subclasses of Application also can obtain the Resources, you could access them simply when you define a static method, which returns them, like:
public static Resources getAppResources()
{
return _appCtrl.getResources();
}
But be very careful when passing around Context references to avoid memory leaks.
Dave, what kind of data is it? If it's general data that pertains to the application as a whole (example: user data), then extend the Application class and store it there. If the data pertains to the Activity, you should use the onSaveInstanceState and onRestoreInstanceState handlers to persist the data on screen rotation.
You can actually override the orientation functionality to make sure that your activity isn't destroyed and recreated. Look here.
You can create Application class and save your all data on that calss for use that anywhere in your application.
I know this is the very old question but using the ViewModel from the jetpack components is the best way to preserve the data between Activity rotation.
The ViewModel class is designed to store and manage UI-related data in a lifecycle conscious way. The ViewModel class allows data to survive configuration changes such as screen rotations.

Categories

Resources