compile ffmpeg with android ndk r5b.
ffmpeg 0.6.1
android ndk r5b
cygwin 1.7
build reference url : http://www.cnblogs.com/scottwong/archive/2010/12/17/1909455.html
but, ffmpeg ./configure result error! (below config.err file)
check_cc
BEGIN /tmp/ffconf.GlDiY1P8.c
1 int main(void){ return 0; }
END /tmp/ffconf.GlDiY1P8.c
/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/windows/bin/arm-eabi-gcc -fPIC -DANDROID -c -o /tmp/ffconf.1kQLpGaU.o /tmp/ffconf.GlDiY1P8.c
arm-eabi-gcc.exe: /tmp/ffconf.GlDiY1P8.c: No such file or directory
arm-eabi-gcc.exe: no input files
C compiler test failed.
so, i just try test code.
// test.c code
int main(){
return 0;
}
/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/windows/bin/arm-eabi-gcc -fPIC -DANDROID -c -o ./test.o ./test.c
ok!!!! no problem.
but,
cp ./test.c /tmp (copy to /tmp)
/android-ndk-r5b/toolchains/arm-eabi-4.4.0/prebuilt/windows/bin/arm-eabi-gcc -fPIC -DANDROID -c -o ./test.o /tmp/test.c
arm-eabi-gcc.exe: /tmp/test.c: No such file or directory
arm-eabi-gcc.exe: no input files
fail!!!
difference is only file path. /tmp directory exist, and permission is right. /home/test.c is same result.
what's wrong?
I have had a hard time to get it working in Windows, but finally I've managed to do it!
The previous posts were correct - there's a problem with Cygwin paths and Windows paths.
I have tried the solution described in the post above as the very first thing, but it was not working. Finally I've understand the reason: even if you put into your build_android.sh file the Windows path, the config for FFmpeg still contains the wrong path.
So in my case I have changed partially the config file in FFmpeg root directory from:
#set temporary file name
: ${TMPDIR:=$TEMPDIR}
: ${TMPDIR:=$TMP}
: ${TMPDIR:=/tmp}
to this:
# set temporary file name
#: ${TMPDIR:=$TEMPDIR}
#: ${TMPDIR:=$TMP}
: ${TMPDIR:=D:/InstallTools/Android/Cygwin_Root/tmp}
After this, I got it compiling.
You don't set the tmp directory. You can set it in /etc/profile or just in the terminal with export TMPDIR=/your/tmp/directory.
Notice:
1. If you compile with cygwin, the directory must be like D:/tmp. You can't use /cygdrive/d/tmp.
2. You must have the permission of the folder.
I could not get this to work either, I had the exact same problem. However I was able to compile using "android-ndk-r4". I am not sure at the moment what is causing the problem but if I ever get around to figuring it out I'll post that too.
So for now workaround is to use ndk r4.
I managed to build it, using NDK R6, cygwin. Indeed, it does not support /cydrive/ paths, simply use paths like windows; example below:
NDK=e:/AndroidSDK/NDK6
PLATFORM=$NDK/platforms/android-9/arch-arm/
PREBUILT=$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/windows
If you have not solved this problem, check the last part of config.log in the ffmpeg directory; it is most likely a path or CC parameter problem.
I have been having the exact same problem with r6. I have tried Lambage's suggestion with r4 but still could not get this to work.
I have been looking into the problem quite a lot and I think I've discovered the reason.
1)configure is calling the android cross compiler which is a windows .exe file.
2)It is calling it through cygwin which uses unix file naming conventions. E.G /cygdrive/c/directory instead of C:\directory
3)It says in the android NDK toolchain documentation that the cross compilers do NOT accept cygwin style filepaths (source: NDK/docs/STANDALONE_TOOLCHAIN.html):
5.1/ Windows support:
The Windows binaries do not depend on Cygwin. The good news is that they
are thus faster, the bad news is that they do not understand the Cygwin
path specification like /cygdrive/c/foo/bar (instead of C:/foo/bar).
I'm still trying to find a way to do this. If i solve it then I'll come back and edit this post...tbc
Related
A lot of people have mentioned about compiling ffmpeg for android. But I recently tried many of them and did not find them working.
Here is what I tried.
https://github.com/guardianproject/android-ffmpeg-java
but in this I got the following errors.
/home/musil/Desktop/android-ndk-r10c-linux-x86_64/android-ndk-r10c/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86_64/bin/arm-linux-androideabi-gcc --sysroot=/home/musil/Desktop/android-ndk-r10c-linux-x86_64/android-ndk-r10c/platforms/android-3/arch-arm -I../x264 -mfloat-abi=softfp -mfpu=neon -mcpu=cortex-a8 -c -o /tmp/ffconf.6LOSva5W.o /tmp/ffconf.YWZ9ftQ8.c
arm-linux-androideabi-gcc: error trying to exec 'cc1': execvp: No such file or directory
C compiler test failed.
Than I have tried other way mentioned on
http://www.roman10.net/how-to-build-ffmpeg-with-ndk-r9/
but in that I got the following error.
But in that the prefix install is /usr/local/ instead of ./arm/ and arch is x86 instead of arm. And it compiles but no arm folder is created.
Does anyone know how to compile ffmpeg for ndk-r10c.
Will be very helpful if someone can point out what I am doing wrong or how can I build the ffmpeg 2.4.1 for latest ndk.
Thanks
I am not sure why you see that error. I was able to successfully compile FFMpeg and you should be able to get the .so files for all architecture from this link https://github.com/android-native-libraries
All, Forgive me I am familiar with the C program for the Android/Linux platform. Now I am trying to use the Sourcery G++ Lite Edition
for ARM to build my sample C program and deploy it to the Linux of the Android platform.
Below is the instructions what I follow.
So far it works fine. But I have something I didn't understand well. please review it . thanks.
The Source code is a hello world program.
#include <stdio.h>
int main(int argc,char * argv[])
{
printf("Hello, Android!\n");
return 0;
}
In the development machine command console. run the following commands line.
arm-none-linux-gnueabi-gcc hello.c -static -o hellostatic
adb push hellostatic /data/test
adb shell
cd /data/test
.hellostatic
Hello, Android!
So here is my question.
Can gcc build a executable file from a c source code file? Seems It doesn't need link tool. Is it right? thanks.
Can gcc build a executable file from a c source code file?
yes, of course.
Seems It doesn't need link tool?
no, I extract the following sentences from gcc manual,
GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.
At default gcc will do complie and link operation, unless you type particular options such like:
gcc -c file.c
this will just compile file.c to file.o
or:
gcc -o file file.c
this will complie file.c to file.o and also link it to make a executable file finally.
Although yanchong had already gave the nice answer , I also found a good read from here. I think it will help to understand the concepts of Compile, Link and Build. Thanks.
I'm at the end of my rope on this one.
I'm new to Android development. I've read the GCC install documentation and parts of Embedded Android. I'm trying to cross-compile gcc 4.7 using an Android NDK toolchain built with the make-standalone-toolchain.sh script. I'm using the gcc and binutils source files from the NDK toolchain sources.
I copied the gcc-4.7 and binutils-2.23 into a directory gcc-src and created a 'build' directory alongside both, as follows:
gcc-src/gcc-4.7
gcc-src/binutils-2.23
gcc-src/build
I've symlinked the sources for
bfd,
gas,
gprof,
ld,
gprof
opcodes
from binutils to the gcc-4.7 source directory. I also ran the script in contrib/ that downloads the relevant sources for
gmp,
mpfr
mpc
and creates the appropriate symlinks
I've run configure with the (latest) following options:
sh ../gcc-4.7/configure --prefix=/usr/arm --disable-option-checking --host=arm-linux-eabi
--target=arm-linux-eabi --with-sysroot=/usr/sysroot --with-build-sysroot=/usr/sysroot --with-build-time-tools=/usr/bin --program-prefix=arm-
--disable-multilib --with-cpu=arm7 --enable-languages=c,c++,lto --disable-werror --disable-nls CC=arm-linux-androideabi-gcc GCC=arm-linux-androideabi-gcc
CFLAGS='-Wall -g -mfloat-abi=softfp -mbionic -mandroid -Wl,-lsupc++ -Wl,-lgnustl_shared'
CPPFLAGS='-Wall -g -mbionic -mandroid' LDFLAGS='-Wl,-lsupc++ -Wl,-lgnustl_shared' CXX=arm-linux-androideabi-g++
LD=arm-linux-androideabi-ld STRIP=arm-linux-androideabi-strip OBJDUMP=arm-linux-androideabi-objdump READELF=arm-linux-androideabi-readelf
AS=arm-linux-androideabi-as NM=arm-linux-androideabi-nm
LIBS='-lc -ldl -lm' CC_FOR_TARGET=arm-linux-androideabi-gcc CPP_FOR_TARGET=arm-linux-androideabi-gcc CXX_FOR_TARGET=arm-linux-androideabi-g++
GCC_FOR_TARGET=arm-linux-androideabi-gcc RANLIB_FOR_TARGET=arm-linux-androideabi-gcc-ranlib LD_FOR_TARGET=arm-linux-androideabi-ld
AS_FOR_TARGET=arm-linux-androideabi-as NM_FOR_TARGET=arm-linux-androideabi-gcc-nm AR_FOR_TARGET=arm-linux-androideabi-gcc-ar
READELF_FOR_TARGET=arm-linux-androideabi-readelf
OBJDUMP_FOR_TARGET=arm-linux-androideabi-objdump STRIP_FOR_TARGET=arm-linux-androideabi-strip
host_configargs=--with-headers=/usr/sysroot/usr/include target_configargs=/usr/sysroot/usr/include
When I run make -d...or make -d all-host...it constantly fails when it tries to compile gen-fac_ui.c because it can't find the includes stdio.h, stdint.h or string.h.
I'll add the exact error tomorrow after I re-set my build directory and start again, but I wanted to post the details and problem tonight before I pass out.
Any help...is greatly appreciated. I'm at a loss on this one.
QUICK NOTE: I noticed that the binutils src directory contains an include/ folder...I'll try symlinking that into the gcc src directory and running 'make distclean' then '../gcc-4.7/configure && make again.'
UPDATE: symlinking include/ did not fix the problem. Here's the error I'm continuously getting
make[2]: Entering directory `/project/android/tc-src/gcc/gcc-src/build/gmp'
gcc `test -f 'gen-fac_ui.c' || echo '../../gcc-4.7/gmp/'`gen-fac_ui.c -o gen-fac_ui
Putting child 0x007ddd30 (gen-fac_ui) PID 25531 on the chain.
Live child 0x007ddd30 (gen-fac_ui) PID 25531
../../gcc-4.7/gmp/gen-fac_ui.c:20:19: error: stdio.h: No such file or directory
../../gcc-4.7/gmp/gen-fac_ui.c:21:20: error: stdlib.h: No such file or directory
In file included from ../../gcc-4.7/gmp/gen-fac_ui.c:23:
../../gcc-4.7/gmp/dumbmp.c:42:20: error: string.h: No such file or directory
In file included from ../../gcc-4.7/gmp/gen-fac_ui.c:23:
I successfully compiled gen-fac_ui by doing the following:
Uninstalling the build gcc which is not (I think) needed as I'm using the cross-compiler toolchain generated by the make-standalone-toolchain.sh script from the Android NDK
Configuring the appropriate variables to set up the cross-compiler tools as the BUILD tools.
I have a different problem now, which I'll post in a different question. Basically, while gen-fac_ui compiles, it (of course) won't run.
I have a really simple helloworld.cpp program
#include <iostream>
using namespace std;
int main ()
{
cout << "Hello World!";
return 0;
}
And I'm trying to compile it for android x86 with the cross-compiler from the toolchain:
/Users/me/android-ndk-r8/toolchains/x86-4.4.3/prebuilt/darwin-x86/bin/i686-android-linux-g++ helloworld.cpp -L "/Users/me/android-ndk-r8/sources/cxx-stl/stlport/libs/x86/" -lstlport_static
However, I get errors:
helloworld.cpp:2:20: error: iostream: No such file or directory
Any idea why?
Check the documentation.html file included with the NDK, under "Standalone Toolchain". It says that if you invoke the compiler in this way you won't be able to "use any C++ STL". However it is possible, as the documentation explains, if you first create a "customized" toolchain installation, using something like the following command:
$NDK/build/tools/make-standalone-toolchain.sh --platform=android-8 --install-dir=/tmp/my-android-toolchain --arch=x86
where $NDK is the path to your NDK directory. Note the --arch=x86 which means that the toolchain is prepared specifically for the x86 Android. This prepares what you need in one directory, including the STL headers and folders. You should then be able to use -lstdc++ to link against the STL (static version), i.e. something like:
/tmp/my-android-toolchain/bin/i686-android-linux-g++ helloworld.cpp -lstdc++
For a more complete explanation, please see the NDK documentation.
The NDK documentation is not entirely accurate, at least not currently. In fact, it states when using the prebuilt toolchain "You won't be able to use any C++ STL (either STLport or the GNU libstdc++) with it.", but this is out of date. I created a small hello world program using the include with the same error. It can be solved without creating your own toolchain though, which is nice if you don't want to have to add one more step to your configuration process and allows you to always use the latest SDK platform without creating a new toolchain every time.
The NDK ships with the source code for several versions of standard C++ libraries: GAbi++, STLport, and GNU STL. Each flavor comes with prebuilt shared and static libs as well. My example below will use stlport.
To use the stand-alone toolchain at its installed location, you can do something like this:
export CXX='$NDK_ROOT/toolchains/arm-linux-androideabi-4.8/prebuilt/darwin-x86_64/bin/arm-linux-androideabi-g++ --sysroot="$NDK_ROOT/platforms/android-19/arch-arm"'
This, for example, would set your CXX compiler to compile ARM on the OS X system using SDK platform level 19. This much you probably already knew. Also, you would want to export your CC, CPP, LD, AR, and RANLIB if you use it. I also personally create an envar for READELF.
To add support for C++ libs, you could do something like follows:
$CXX helloworld.cpp -I$NDK_ROOT/sources/cxx-stl/stlport/stlport -L$NDK_ROOT/sources/cxx-stl/stlport/libs/armeabi -lstlport_shared
Note that this will link the libstlport_shared.so which will now be required at runtime, so you may need to add a relative path to the command above to support that, depending on your APK structure. If you want to just test this simple case, you can just run this on the emulator as follows:
adb push a.out /data
adb push $NDK_ROOT/sources/cxx-stl/stlport/libs/armeabi/libstlport_shared.so /data
adb shell
# su
# cd /data
# chmod 777 a.out
# ./a.out
To get rid of the headache of dealing with shared library paths, you can also statically link the C++ library in by changing "-lstlport_shared" to "-lstlport_static". There are some consequences of doing this, as explained in the NDK Dev Guide. The biggest issue is due to having the static library linked in multiple places, causing:
- memory allocated in one library, and freed in the other would leak or even corrupt the heap.
- exceptions raised in libfoo.so cannot be caught in libbar.so (and may simply crash the program).
- the buffering of std::cout not working properly
A useful tool is also included to see what dependencies your program has, the readelf tool.
To see what other shared libraries your program requires, you can run the following:
$NDK_ROOT/toolchains/arm-linux-androideabi-4.8/prebuilt/darwin-x86_64/bin/arm-linux-androideabi-readelf -a a.out | grep NEEDED
Other cool standard tools:
addr2line - convert a stack trace address to a line of code
nm - Displays the symbol table
objdump - displays info on an object
i call one of the functions from gnustl after it runs fine from prebuilt aosp arm-linux-androideabi-gcc --std=c++11 and after crashing error i cant get a backtrace from logs or reason, my hope is turning to crossbuilt qemu-linux-user to run host compiled i686 binary on the arm, difficulty is interacting with crosshost libs aapt from adt always crashes on any other than platform specific libs, unless kernel module packaged update is possible...
I have a Device on which I installed Android Gingerbread 2.3.4
Here i want to run C executable file on android device
I am able to run android NDK application on this Device and it runs perfect.
But I want to run only one hello.c executable file on the Device.
/* #includes #defines ... */
int main(){
// Do something when this is executed
return 0;
}
Is there any way to compile this file with Android NDK tool chain so I can run this file's executable?
I found one thing here but this is not working for me. I am using Android NDK, Revision 7b for Linux.
There is no directory structure like this.
First, let me say that my answer is dependent on your using NDK r7b (it'll work for r7c as well) on Linux (change paths appropriately for other systems).
Edit: Last tested with NDK r8e on Linux and Nexus 4 with adb from SDK Platform-Tools Rev 18 on Windows 7 (latest as of 2013-07-25) without root access.
Yet Another Edit: Please read this question for altering my instruction for native binaries that need to run on Android 5.0(Lollypop) and later.
Go to $NDK_ROOT (The topmost folder of NDK zip when unzipped).
Copy $NDK_ROOT/samples/hello-jni directory as $NDK_ROOT/sources/hello-world.
Go to $NDK_ROOT/sources/hello-world.
Edit AndroidManifest.xml to give the application an appropriate name (This is optional).
Go to $NDK_ROOT/sources/hello-world/jni. This is where the source code is.
Edit hello-jni.c, remove all the code, and put in your hello world code. Mine is:#include
int main( int argc, char* argv[])
{
printf("Hello, World!");
return 0;
}
Edit Android.mk and change the line include $(BUILD_SHARED_LIBRARY) to include $(BUILD_EXECUTABLE). You can also change the LOCAL_MODULE line to the name you want for your executable(default is hello-jni)
Go back to $NDK_ROOT/sources/hello-world
Run ../../ndk-build to create the executable.
Copy it from $NDK_ROOT/sources/hello-jni/libs/armeabi/hello-jni to /data/local/tmp on the Android device and change it's permissions to 755 (rwxr-xr-x). If you changed the LOCAL_MODULE line in $NDK_ROOT/sources/hello-world/jni/Android.mk, the executable name will be the new value of LOCAL_MODULE instead of hello-jni. (All this is done via adb from the Android SDK.)
Execute the binary with full path as /data/local/tmp/hello-jni, or whatever you named it to.
And you're done( and free to start on the documentation in $NDK_ROOT/docs to get a better idea of what to do).
The best/easiest place to put a executable is /data/local. You'll also need to chmod the binary as executable. Often you'll also need to do this in two steps to get the binary from /sdcard/ to /data/local:
$ adb push mybin /sdcard/
$ adb shell
$ cp /sdcard/mybin /data/local/mybin
$ cd /data/local
$ chmod 751 mybin
Caveats:
Not all systems have cp. You can use cat if this is the case:
$ cat /sdcard/mybin > /data/local/mybin
Some systems don't allow write in /data/local for the "shell" user. Try /data/local/tmp
the "/sdcard" location is not executable, meaning that any file there is not executable at all.
the only way to "adb push" executable would be to put them in "/data/local", which should be writable for adb, and allow execution for anyone.
I recently had the same problem on a new nexus-5. I'd like to add that /data/local was not writable by the user ("shell", uid 2000) I got with adb shell. But putting the executable in the subdirectory /data/local/tmp/ worked fine.
In a nutshell,
First, to cross-compile your C code from your host machine, use NDK toolchain with sysroot option and position independent option -fPIE -pie.
$NDKROOT/toolchains/aarch64-linux-android-4.9/prebuilt/darwin-x86_64/bin/aarch64-linux-android-gcc \
--sysroot=$NDKROOT/platforms/android-22/arch-arm64 -fPIE -pie main.c -o main
the arch part arrch64 or arch-arm64, the toolchain version part 4.9, platform version part android-22, and the binary format for your host machine darwin-x86_64 may vary by your environment.
Second, push your binary under /data/local/tmp and execute it from adb shell.