Preventing "flickering" when calling Drawable.draw() - android

I have a little experimentation app (essentially a very cut-down version of the LunarLander demo in the Android SDK), with a single SurfaceView. I have a Drawable "sprite" which I periodically draw into the SurfaceView's Canvas object in different locations, without attempting to erase the previous image. Thus:
private class MyThread extends Thread {
SurfaceHolder holder; // Initialised in ctor (acquired via getHolder())
Drawable sprite; // Initialised in ctor
Rect bounds; // Initialised in ctor
...
#Override
public void run() {
while (true) {
Canvas c = holder.lockCanvas();
synchronized (bounds) {
sprite.setBounds(bounds);
}
sprite.draw(c);
holder.unlockCanvasAndPost(c);
}
}
/**
* Periodically called from activity thread
*/
public void updatePos(int dx, int dy) {
synchronized (bounds) {
bounds.offset(dx, dy);
}
}
}
Running in the emulator, what I'm seeing is that after a few updates have occurred, several old "copies" of the image begin to flicker, i.e. appearing and disappearing. I initially assumed that perhaps I was misunderstanding the semantics of a Canvas, and that it somehow maintains "layers", and that I was thrashing it to death. However, I then discovered that I only get this effect if I try to update faster than roughly every 200 ms. So my next best theory is that this is perhaps an artifact of the emulator not being able to keep up, and tearing the display. (I don't have a physical device to test on, yet.)
Is either of these theories correct?
Note: I don't actually want to do this in practice (i.e. draw hundreds of overlaid copies of the same thing). However, I would like to understand why this is happening.
Environment:
Eclipse 3.6.1 (Helios) on Windows 7
JDK 6
Android SDK Tools r9
App is targetting Android 2.3.1
Tangential question:
My run() method is essentially a stripped-down version of how the LunarLander example works (with all the excess logic removed). I don't quite understand why this isn't going to saturate the CPU, as there seems to be nothing to prevent it running at full pelt. Can anyone clarify this?

Ok, I've butchered Lunar Lander in a similar way to you, and having seen the flickering I can tell you that what you are seeing is a simple artefact of the double-buffering mechanism that every Surface has.
When you draw anything on a Canvas attached to a Surface, you are drawing to the 'back' buffer (the invisible one). And when you unlockCanvasAndPost() you are swapping the buffers over... what you drew suddenly becomes visible as the "back" buffer becomes the "front", and vice versa. And so your next frame of drawing is done to the old "front" buffer...
The point is that you always draw to seperate buffers on alternate frames. I guess there's an implicit assumption in graphics architecture that you're always going to be writing every pixel.
Having understood this, I think the real question is why doesn't it flicker on hardware? Having worked on graphics drivers in years gone by, I can guess at the reasons but hesitate to speculate too far. Hopefully the above will be sufficient to satisfy your curiousity about this rendering artefact. :-)

You need to clear the previous position of the sprite, as well as the new position. This is what the View system does automatically. However, if you use a Surface directly and do not redraw every pixel (either with an opaque color or using a SRC blending mode) you must clear the content of the buffer yourself. Note that you can pass a dirty rectangle to lockCanvas() and it will do the union for you of the previous dirty rectangle and the one you are passing (this is the mechanism used by the UI toolkit.) It will also set the clip rect of the Canvas to be the union of these two rectangles.
As for your second question, unlockAndPost() will do a vsync, so you will never draw at more than ~60fps (most devices that I've seen have a display refresh rate set around 55Hz.)

Related

Erratic errors loading image with Texture2d.LoadImage(byte[]) on Android devices

I have an app which has to create Sprite-instances on the fly based on data contained in byte arrays (PNGs and JPGs). The following code is used to create the sprites:
Texture2D texture = new Texture2D(2, 2, TextureFormat.RGBA32,false,false);
texture.LoadImage(data);
Vector2 pivot = new Vector2(0.5f, 0.5f);
Rect tRect = new Rect(0, 0, texture.width, texture.height);
return Sprite.Create(texture, tRect, pivot);
This works fine, however, depending on the device and the size of the images, after a random number of images, the app freezes and then will be shut down by the OS. Its always another image, which fails. Also, the data source is irrelevant.
Looking into the logs of the app via adb shows nothing. If I write to the debug log, I can see, that the last statement which gets called is texture.LoadImage. However, there is no exception or another information about the error. Catching the exception does also not work.
The error does not occur in the editor. The error occurs on the android devices (2) in development build and in production build.
Searching the web, I found the below entry, which states the very same problem, but no solution has been posted (they circled around the www-part, however the problem is not with that):
https://forum.unity.com/threads/android-crash-when-using-multiple-www.483941/
UPDATE
One interesting finding is, that if I set the markNonReadable-Parameter of the texture.LoadImage() method to true, the error occurs less frequently, but still is there.
texture.LoadImage(data,true);
Textures are not garbage collected. So if you create a texture using new Texture then you need to destroy the texture with Destroy(texture) when you no longer need it. I believe Sprite object also needs to be destroyed.
In your case, textures that were loaded stayed in memory until Android OS closed your app because of memory pressure.
UnloadUnusedAssets() should also destroy all the textures and sprites that are no longer referenced, but it takes a lot of time (about 1 second), so it only makes sense to call that when changing scenes.

Android canvas multiple draws causes flickering

the keywords about this topic:
CustomSurfaceView: three custom surfaceview for three different levels.
Canvas: lock/unlockAndPost method (i'm not using custom bitmap )
Multi thread ( each surface is a separate thread )
Shapes ( shapes on canvas )
Client/Server ( architecture )
Flickering ( IS WHY I'M HERE )
We are developing a client/server application and I'm working on the client side. I'm receiving messages from the server containing general data (coordinates, color, width [...] ) about paths like, circle, rectangle, line and other shapes. The web application allows the user to send these data drawing on HTML5 Canvas, to an android device that receiving this messages and parsing it, will be able to redraw all the shapes. From my own experience on this subjects, I learned that the best way to keep in control all the things you draw on the canvas, is saving everything into a buffer, array, list or something like that, then reuse it when you want (for example, you can use the older path for show, hide, move or simply change something on the canvas). In my opinion, the android application follows the best practice of android development and OOP paradigm so I'm not assuming errors related to the bad architecture. In this case, I'm saving the messages on web client side. When the user draws on HTML5 Canvas, the messages which contain shape info are perfectly reported to the android canvas, but the problem appears when:
[example]
Consider you draw 10 objects (10 messages) and you want delete only one object on web app canvas, so the only way is clearing all the canvas, and redraw all the previous shapes without the deleted shape (so resend to the client 9 messages by loop the messages buffer ). This method works perfectly for the web app but cause flickering problem on android client. So after too many experiments I found a workaround, using a Thread.sleep(100)(Whooo! 100ms is too much), in order to parse slowly the messages and let the surfaceview thread to read correctly the data (data access through singleton pattern) and write on the double-buffer of the canvas.Well, it's slow and ugly but it works ! Actually I don't like this “horrible” workaround so please help me to see an exit strategy.
This is a piece of code where the canvas get data from shapes containers and draw if data are present. The data of each containers came from server messages.
#Override
public void run() {
Canvas canvas = null;
while (running) {
//this is the surface's canvas
try {
canvas = shapesSurfaceHolder.lockCanvas();
synchronized (shapesSurfaceHolder) {
if (shapesSurfaceHolder.getSurface().isValid()) {
if(!Parser.cmdClear){
//draw all the data present
canvas.drawPath(PencilData.getInstance().getPencilPath(),
PencilData.getInstance().getPaint());
canvas.drawPath(RectData.getInstance().getRectPath(),
RectData.getInstance().getPaint());
canvas.drawPath(CircleData.getInstance().getCirclePath(),
CircleData.getInstance().getPaint());
canvas.drawPath(LineData.getInstance().getLinePath(),
LineData.getInstance().getPaint());
canvas.drawText(TextData.getInstance().getText(),
TextData.getInstance().getX(),
TextData.getInstance().getY(),
TextData.getInstance().getPaint());
} else {
//remove all canvas content and clear data.
canvas.drawColor(Color.TRANSPARENT, PorterDuff.Mode.CLEAR);
for (int i = 0; i < AbstractFactory.SHAPE_NUM; i++) {
abstracFactory.getShape(i).clearData();
}
}
}
}
} finally {
if (canvas != null) {
shapesSurfaceHolder.unlockCanvasAndPost(canvas);
}
}
}
}//end_run()
I can summarize that, apparently, my problem is to draw too quickly
Note:
Similar concept: Android thread controlling multiple texture views causes strange flickering
Hardware acceleration is enabled.
minSdkVersion 17
Tested on
Tablet Samsung SM-T113
Google Nexus 5
The TextureView issue was due to a bug specific to TextureView. You're using SurfaceView, so that does not apply here.
When drawing on a SurfaceView's Surface, you must update every pixel inside the dirty rect (i.e. the optional arg passed to lockCanvas()) every time. If you don't provide a dirty rect, that means the entire screen must be updated. This is because the Surface is double- or triple-buffered, and swapped when you call unlockCanvasAndPost(). If you lock / clear / unlock, then the next time you lock / draw / unlock, you will not be drawing into the buffer you previously cleared.
If you want to do incremental rendering, you should point your Canvas at an off-screen Bitmap and do all your rendering there. Then just blit the entire bitmap between lock and unlock. The alternative is to store up the drawing commands, starting with the initial clear, and play them all back between lock/unlock.
The phrase "three custom surfaceview" is somewhat concerning if they're all on screen at once. If you have them all at different Z depths (default, media overlay, top) then they will behave correctly, but the system is generally more efficient if you can put everything on one.

Background image taking too long to draw (Canvas) Jerky Sprites......?

Hey all I'm at a crossroads with my app that I've been working on.
It's a game and an 'arcade / action' one at that, but I've coded it using Surfaceview rather than Open GL (it just turned out that way as the game changed drastically from it's original design).
I find myself plagued with performance issues and not even in the game, but just in the first activity which is an animated menu (full screen background with about 8 sprites floating across the screen).
Even with this small amount of sprites, I can't get perfectly smooth movement. They move smoothly for a while and then it goes 'choppy' or 'jerky' for a split second.
I noticed that (from what I can tell) the background (a pre-scaled image) is taking about 7 to 8 ms to draw. Is this reasonable? I've experimented with different ways of drawing such as:
canvas.drawBitmap(scaledBackground, 0, 0, null);
the above code produces roughly the same results as:
canvas.drawBitmap(scaledBackground, null, screen, null);
However, if I change my holder to:
getHolder().setFormat(PixelFormat.RGBA_8888);
The the drawing of the bitmap shoots up to about 13 MS (I am assuming because it then has to convert to RGB_8888 format.
The strange thing is that the rendering and logic move at a very steady 30fps, it doesn't drop any frames and there is no Garbage Collection happening during run-time.
I've tried pretty much everything I can think of to get my sprites moving smoothly
I recently incorporated interpolation into my gameloop:
float interpolation = (float)(System.nanoTime() + skipTicks - nextGameTick)
/ (float)(skipTicks);
I then pass this into my draw() method:
onDraw(interpolate)
I have had some success with this and it has really helped smooth things out, but I'm still not happy with the results.
Can any one give me any final tips on maybe reducing the time taken to draw my bitmaps or any other tips on what may be causing this or do you think it's simply a case of Surfaceview not being up to the task and therefore, should I scrap the app as it were and start again with Open GL?
This is my main game loop:
int TICKS_PER_SECOND = 30;
int SKIP_TICKS = 1000 / TICKS_PER_SECOND;
int MAX_FRAMESKIP = 10;
long next_game_tick = GetTickCount();
int loops;
bool game_is_running = true;
while( game_is_running ) {
loops = 0;
while( GetTickCount() > next_game_tick && loops < MAX_FRAMESKIP) {
update_game();
next_game_tick += SKIP_TICKS;
loops++;
}
interpolation = float( GetTickCount() + SKIP_TICKS - next_game_tick )
/ float( SKIP_TICKS );
display_game( interpolation );
}
Thanks
You shouldn't use Canvas to draw fast sprites, especially if you're drawing a fullscreen image. Takes way too long, I tell you from experience. I believe Canvas is not hardware accelerated, which is the main reason you'll never get good performance out of it. Even simple sprites start to move slow when there are ~15 on screen. Switch to OpenGL, make an orthographic projection and for every Sprite make a textured quad. Believe me, I did it, and it's worth the effort.
EDIT: Actually, instead of a SurfaceView, the OpenGL way is to use a GLSurfaceView. You create your own class, derive from it, implement surfaceCreated, surfaceDestroyed and surfaceChanged, then you derive from Renderer too and connect both. Renderer handles an onDraw() function, which is what will render, GLSurfaceView manages how you will render (bit depth, render modes, etc.)

Android OpenGL app display white screen when launch the second time

My game displays texture correctly in the first launch, then I exit and launch it again and display nothing but white screen. I think there are some problems with texture loading and android activity life-cycle such as clean up things when pause or destroy.
The funny thing is it only display white screen when i run it, but display perfectly well when i debug.
Please give me some of your advice, thank you.
My experience so far:
Create your textures in power of two and make sure you scale and
clip them to the right ratio when you draw.
Don't stick to RBGA_8888 when you can do ALPHA_8 (text rendering)
Do whatever you can do in OnSurfaceCreated before you get called in
OnSurfaceDraw
Avoid the GL11 context cast. Some things won't work e.g glColor4ub
will compile but not work.
Balance your calls of enable and disable for each component draw
your call into your scene graph.
Pre-allocate your nio buffers
Use DrawElements but for the simplest shapes of one vertice
Test on as many devices as you can. Just don't settle for the
emulator e.g. non power of twos work on emulator but not on the phone.
If you can then use the on demand drawing.
Use the trick of putting a wait in the onTouchEvent call for 20ms
and a notify in your onDraw to reduce the deluge of motion events you
have to process. You can bypass onTouchEven and use a lower call to
save some cycles as well.
Use texture atlas as much as you can e.g. to draw score and text or
animations
Disable the fancy rendering options (DITHER_TEST etc...) Unless you
crave a realistic rendering on textures.
If you draw in 2D, then disable the DEPTH_TEST
Don't forget the Bitmap.recycle() call when you are done binding
your textures.
Avoid Object creation destruction (PointF Rect) in your rendering
routines. GC calls will slow down your frame rate.
Preload your textures extensively. don't wait until you draw at the
last minute to bind your textures. The lag is noticable if you do so
it's better at app start up time.
You should use the onPause and onResume methods, if its not solving the problem I will add more suggestions. I had the same problem a few months ago.
#Override
protected void onPause() {
super.onPause();
mGLView.onPause();
}
#Override
protected void onResume() {
super.onResume();
mGLView.onResume();
}
Ok then maybe:
public void onSurfaceChanged(GL10 gl, int w, int h) {
gl.glViewport(0, 0, w, h);
}
Are you reloading the textures in onSurfaceCreated() or in another place? You'll want to have that stuff in onSurfaceCreated().

android game loop vs updating in the rendering thread

I'm making an android game and am currently not getting the performance I'd like. I have a game loop in its own thread which updates an object's position. The rendering thread will traverse these objects and draw them. The current behavior is what seems like choppy/uneven movement. What I cannot explain is that before I put the update logic in its own thread, I had it in the onDrawFrame method, right before the gl calls. In that case, the animation was perfectly smooth, it only becomes choppy/uneven specifically when I try to throttle my update loop via Thread.sleep. Even when I allow the update thread to go berserk (no sleep), the animation is smooth, only when Thread.sleep is involved does it affect the quality of the animation.
I've created a skeleton project to see if I could recreate the issue, below are the update loop and the onDrawFrame method in the renderer:
Update Loop
#Override
public void run()
{
while(gameOn)
{
long currentRun = SystemClock.uptimeMillis();
if(lastRun == 0)
{
lastRun = currentRun - 16;
}
long delta = currentRun - lastRun;
lastRun = currentRun;
posY += moveY*delta/20.0;
GlobalObjects.ypos = posY;
long rightNow = SystemClock.uptimeMillis();
if(rightNow - currentRun < 16)
{
try {
Thread.sleep(16 - (rightNow - currentRun));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
And here is my onDrawFrame method:
#Override
public void onDrawFrame(GL10 gl) {
gl.glClearColor(1f, 1f, 0, 0);
gl.glClear(GL10.GL_COLOR_BUFFER_BIT |
GL10.GL_DEPTH_BUFFER_BIT);
gl.glLoadIdentity();
gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[0]);
gl.glTranslatef(transX, GlobalObjects.ypos, transZ);
//gl.glRotatef(45, 0, 0, 1);
//gl.glColor4f(0, 1, 0, 0);
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, uvBuffer);
gl.glDrawElements(GL10.GL_TRIANGLES, drawOrder.length,
GL10.GL_UNSIGNED_SHORT, indiceBuffer);
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);
gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY);
}
I've looked through replica island's source and he's doing his update logic in a separate thread, as well as throttling it with Thread.sleep, but his game looks very smooth. Does anyone have any ideas or has anyone experienced what I'm describing?
---EDIT: 1/25/13---
I've had some time to think and have smoothed out this game engine considerably. How I managed this might be blasphemous or insulting to actual game programmers, so please feel free to correct any of these ideas.
The basic idea is to keep a pattern of update, draw... update, draw... while keeping the time delta relatively the same (often out of your control).
My first course of action was to synchronize my renderer in such a way that it only drew after being notified it was allowed to do so. This looks something like this:
public void onDrawFrame(GL10 gl10) {
synchronized(drawLock)
{
while(!GlobalGameObjects.getInstance().isUpdateHappened())
{
try
{
Log.d("test1", "draw locking");
drawLock.wait();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}
When I finish my update logic, I call drawLock.notify(), releasing the rendering thread to draw what I just updated. The purpose of this is to help establish the pattern of update, draw... update, draw... etc.
Once I implemented that, it was considerably smoother, although I was still experiencing occasional jumps in movement. After some testing, I saw that I had multiple updates occurring between calls of ondrawFrame. This was causing one frame to show the result of two (or more) updates, a larger jump than normal.
What I did to resolve this was to cap the time delta to some value, say 18ms, between two onDrawFrame calls and store the extra time in a remainder. This remainder would be distributed to subsequent time deltas over the next few updates if they could handle it. This idea prevents all sudden long jumps, essentially smoothing a time spike out over multiple frames. Doing this gave me great results.
The downside to this approach is that for a little time, the position of objects will not be accurate with time, and will actually speed up to make up for that difference. But it's smoother and change in speed is not very noticeable.
Finally, I decided to rewrite my engine with the two above ideas in mind, rather than patching up the engine I had originally made. I made some optimizations for the thread synchronization that perhaps someone could comment on.
My current threads interact like this:
-Update thread updates the current buffer (double buffer system in order to update and draw simultaneously) and will then give this buffer to the renderer if the previous frame has been drawn.
-If the previous frame has not yet draw, or is drawing, the update thread will wait until the render thread notifies it that it has drawn.
-Render thread waits until notified by update thread that an update has occurred.
-When the render thread draws, it sets a "last drawn variable" indicating which of the two buffers it last drew and also notifies the update thread if it was waiting on the previous buffer to be drawn.
That may be a little convoluted, but what that's doing is allowing for the advantages of multithreading, in that it can perform the update for frame n while frame n-1 is drawing while also preventing multiple update iterations per frame if the renderer is taking a long time. To further explain, this multiple-update scenario is handled by the update thread locking if it detects that the lastDrawn buffer is equal to the one which was just updated. If they are equal, this indicates to the update thread that the frame before has not yet been drawn.
So far I'm getting good results. Let me know if anyone has any comments, would be happy to hear your thoughts on anything I'm doing, right or wrong.
Thanks
(The answer from Blackhex raised some interesting points, but I can't cram all this into a comment.)
Having two threads operating asynchronously is bound to lead to issues like this. Look at it this way: the event that drives animation is the hardware "vsync" signal, i.e. the point at which the Android surface compositor provides a new screen full of data to the display hardware. You want to have a new frame of data whenever vsync arrives. If you don't have new data, the game looks choppy. If you generated 3 frames of data in that period, two will be ignored, and you're just wasting battery life.
(Running a CPU full out may also cause the device to heat up, which can lead to thermal throttling, which slows everything in the system down... and can make your animation choppy.)
The easiest way to stay in sync with the display is to perform all of your state updates in onDrawFrame(). If it sometimes takes longer than one frame to perform your state updates and render the frame, then you're going to look bad, and need to modify your approach. Simply shifting all game state updates to a second core isn't going to help as much as you might like -- if core #1 is the renderer thread, and core #2 is the game state update thread, then core #1 is going to sit idle while core #2 updates the state, after which core #1 will resume to do the actual rendering while core #2 sits idle, and it's going to take just as long. To actually increase the amount of computation you can do per frame, you'd need to have two (or more) cores working simultaneously, which raises some interesting synchronization issues depending on how you define your division of labor (see http://developer.android.com/training/articles/smp.html if you want to go down that road).
Attempting to use Thread.sleep() to manage the frame rate generally ends badly. You can't know how long the period between vsync is, or how long until the next one arrives. It's different for every device, and on some devices it may be variable. You essentially end up with two clocks -- vsync and sleep -- beating against each other, and the result is choppy animation. On top of that, Thread.sleep() doesn't make any specific guarantees about accuracy or minimum sleep duration.
I haven't really gone through the Replica Island sources, but in GameRenderer.onDrawFrame() you can see the interaction between their game state thread (which creates a list of objects to draw) and the GL renderer thread (which just draws the list). In their model, the game state only updates as needed, and if nothing has changed it just re-draws the previous draw list. This model works well for an event-driven game, i.e. where the contents on screen update when something happens (you hit a key, a timer fires, etc). When an event occurs, they can do a minimal state update and adjust the draw list as appropriate.
Viewed another way, the render thread and the game state work in parallel because they're not rigidly tied together. The game state just runs around updating things as needed, and the render thread locks it down every vsync and draws whatever it finds. So long as neither side keeps anything locked up for too long, they don't visibly interfere. The only interesting shared state is the draw list, guarded with a mutex, so their multi-core issues are minimized.
For Android Breakout ( http://code.google.com/p/android-breakout/ ), the game has a ball bouncing around, in continuous motion. There we want to update our state as frequently as the display allows us to, so we drive the state change off of vsync, using a time delta from the previous frame to determine how far things have advanced. The per-frame computation is small, and the rendering is pretty trivial for a modern GL device, so it all fits easily in 1/60th of a second. If the display updated much faster (240Hz) we might occasionally drop frames (again, unlikely to be noticed) and we'd be burning 4x as much CPU on frame updates (which is unfortunate).
If for some reason one of these games missed a vsync, the player may or may not notice. The state advances by elapsed time, not a pre-set notion of a fixed-duration "frame", so e.g. the ball will either move 1 unit on each of two consecutive frames, or 2 units on one frame. Depending on the frame rate and the responsiveness of the display, this may not be visible. (This is a key design issue, and one that can mess with your head if you envisioned your game state in terms of "ticks".)
Both of these are valid approaches. The key is to draw the current state whenever onDrawFrame is called, and to update state as infrequently as possible.
Note for anyone else who happens to read this: don't use System.currentTimeMillis(). The example in the question used SystemClock.uptimeMillis(), which is based on the monotonic clock rather than wall-clock time. That, or System.nanoTime(), are better choices. (I'm on a minor crusade against currentTimeMillis, which on a mobile device could suddenly jump forward or backward.)
Update: I wrote an even longer answer to a similar question.
Update 2: I wrote an even longer longer answer about the general problem (see Appendix A).
One part of the problem may be caused by fact that Thread.sleep() is not accurate. Try to investigate what is the actual time of the sleep.
The most important thing that should make your animations smooth is that you should compute some interpolation factor, call it alpha, that linearly interpolates your animations in consecutive rendering thread calls between two consecutive animation update thread calls. In other words, if your update interval is high comparing to your framerate, not interpolating your animation update steps is like you'd be rendering at update interval framerate.
EDIT: As an example, this is how PlayN does it:
#Override
public void run() {
// The thread can be stopped between runs.
if (!running.get())
return;
int now = time();
float delta = now - lastTime;
if (delta > MAX_DELTA)
delta = MAX_DELTA;
lastTime = now;
if (updateRate == 0) {
platform.update(delta);
accum = 0;
} else {
accum += delta;
while (accum >= updateRate) {
platform.update(updateRate);
accum -= updateRate;
}
}
platform.graphics().paint(platform.game, (updateRate == 0) ? 0 : accum / updateRate);
if (LOG_FPS) {
totalTime += delta / 1000;
framesPainted++;
if (totalTime > 1) {
log().info("FPS: " + framesPainted / totalTime);
totalTime = framesPainted = 0;
}
}
}

Categories

Resources