How to connect web service to android - android

I want to connect a web service to android phone i.e. a request is to be made from web service to android phone. All i can find is article about android to web service but in it (as far as i know..may be wrong) a request is sent to server from android but i want vice versa.

Most carriers give you an IP address inside their networks, so you can't access the devices through any standard method. If the device is online via WiFi then you may have a chance (depending on your ISP and router policies, and given the case you have a web server or a permanent socket listening for requests). Nevertheless, it's still a very bad idea.
I would recommend you to use a different approach: make your android device call a Web Service that recognizes it (either via IMEI, IMSI, both, or a user parameter, depending on your app) and see if it has some "news" for him. If it does, then it should take an action depending on the received data. If you're familiar to Java, it's roughly like the MDB (EJB) idea.

Related

How to communicate between 2 different android app on 2 different device (android)?

just want to know is there any methods to allow 2 different apps to communicate. Both of the apps are installed on different devices as well. I had gone throught quite a lot of research, but seem that INTENT, BROADCAST RECEIVER failed to meet my scenario. INTENT, BROADCAST RECEIVER can be work if both of the apps installed on the same device.
Here i can say you can use to make your things work :-
Sockets are typically used to accomplish this between Android devices (or between any peer devices).
When two devices desire to interact, you configure one or both of them to "listen" for connections on a socket and accept a connection from the other when that happens (or you can have a dedicated client and server and the client always initiates the connections).
You can exchange messages after the link has been made.
Android client server socket applications come in a variety of forms, but one that I found handy was:
Example of Android Server/Client using Socket on the client side (and its companion server side blog article - link included in the client blog)
It should be noted that you might need to add your own "protocol" on top of this. For instance, if you are sending a file that is unknown in length without a special "end" character, you might want to add a byte (or several bytes to represent an int, long, etc.) at the beginning to indicate the length of the transmission so the receiving side can tell when it has received everything (or that it has not received everything in case of an error).
connecting via networks (such as most 3G/4G) that forbid inbound connections
Even though there is nothing theoretically blocking sockets from functioning in these situations, many mobile operators will not permit inbound socket connections in practise. You would also need to determine the mobile's public IP address, which is doable but adds complexity. Whether your solution will only ever operate on a single operator's network, you can test it out to see if it works; but, if it doesn't, you could discover that using a server in the "middle" is preferable and easier: Devices A and B establish connections with servers Device A "discovers" device B after requesting the addresses of connected devices from the server. Device A sends device B a message.
Actually, it indicates that the messages should be forwarded to device B while sending them to the server. Device B is informed by the server that a message is available for it (using some sort of message notification like Google Cloud Messaging for example, or simply by the devices polling regularly to see if they have any messages). Device B accesses the server and downloads the messages. The aforementioned will function on pretty much any network that permits internet connectivity. It does have the drawback of having a server, but for the majority of mobile networks, it is probably a necessary approach.
You make one app a server using ServerSocket.
You make the other app a client using a Socket.
With both devices in the same network the client can connect to the server knowing its local ip.
After connection established they can communicate.

Web server on Android with remote access possibility

can someone confirm, that it is possible to create a web server on android device ( which uses 3G or 4G internet ) and access it via internet ( from the remote PC connected to the internet, not from the same local network ).
I know there already are some web servers for android ( iJetty, nanohttpd ) and the programms like ksweb, so it seems, that it should be possible.
However, I've done some searching in the internet and some people warn, that mobile devices work using NAT protocol, so it would be impossible.
Can somebody resolve the ambiguity?
Thank you in advance.
No, it is generally not possible. The dealbreaker problem is not with Android, but rather that just about any mobile network provider is going to block incoming connections.
For special purposes, you can do things like have the phone contact a publicly visible remote machine and create a tunnel with something like ssh through which inbound connections can then be sent if there is a server program listening on the loopback interface of the Android device. But this tends to be only useful for things like remote testing.
Were you using wifi you could do this, but you'd need to accept that Android is not designed to promise a high availability of any 3rd-party program. You would need a wakelock to keep the processor running. And you may even need to do things like periodically initiate outbound traffic from the device in order to keep the wifi stack/radio in a fully active mode so that it can accept connections.
Generally speaking, data you want to make remotely available from the device should be proactively uploaded to a mutually visible server. If you want to send requests to the device, look at using something like Google Cloud Messaging which is designed to wake up the device and a recipient application on it in order to deliver a brief message.

How to connect to a computer without public IP?

I have a simple app idea in my mind and I need to know how to connect from an Android application (client) to a Windows application (Delphi, server).
There is no need to be specific about the platform, I am familiar with networks in Delphi using winsock or Indy and I'm sure I will be able to figure out the appropriate mechanism in Android.
What I need to know is how to connect to a server (computer), which doesn't have its own public IP and is not in the same network as the client (one can be behind a local router, while the other might be connecting to the internet through 3G, for instance). This should be possible, as many programs work like that (remote desktop programs, TeamViewer, for instance: one computer is assigned an ID and using this ID other computer can connect to it.) I will not have access to the routers behind which the app will be running, so port forwarding is not an option.
I have a working network app, but that only works in LAN, so I'm guessing somewhat another approach is needed.
Thanks for answers
Many of the programs that work that way still use a server with a public IP. Each side of the client connections to the server to say "here I am". The public server can then shuffle data between the two clients.
That still leaves a lot of questions regarding the communication between the public server and each client - i.e. pull vs. push for taking data that was sent to the server and getting it back down to the second client.
You may want to read the specification for Copilot (originally named Project Aardvark). Joel Spolsky published the specification when the started the project. It talks about their use of a reflector service.
The Reflector
A Windows Service which we run on our servers, used to
allow any helper to help any victim even when both of them are behind
firewalls. Both helper and victim connect to the reflector. The
reflector checks that they are authorized and relays messages between
helper and victim until the paid-up time runs out
you could put an intermediate server which they can both route for "nat traversal".
otherwise you will have to put port forwarding on one of those computer's local router to allow incoming connections to be forwarded to the computer.

How to receive incoming message over wireless LAN network and launch web browser?

I am a little stumped. I've been trying to find a way for a wireless device (i.e. Android/ios/Windows mobile devices) to receive a message from a central server and then launch the device web browser.
The Scenario: a server on a WLAN network monitors a certain system. when something on the system goes wrong, the system stops what it is doing and sends an error message to the server and wait for the user to enter a response on the server before it resumes what it was doing.
Now, I want to send a message from the server(when the system it is monitoring crashes) to the wireless devices, so the user does not have to go to the server all the time to continue the system but can just do it over the wireless device (in the web browser).
Just to clarify, I know how to send a message out from the server to everybody connected to the wireless network, i just don't know what to do with that message on the devices...
Any ideas or solutions would be HIGHLY appreciated...
Thanks in advance
You can do this a few different ways:
1) Using commercially available Push Notifications (Google & Apple for example). The advantage is your application will work outside of your wireless LAN, but the disadvantage is you're using their platform, which is restricted in its ability and functionality (having designed and built a couple of these platforms myself I can attest to their limitations - they were going for "least common denominator" when they designed and implemented theirs).
2) If your app is only going to run on a LAN (you control the network) you can put your own system together. The advantage here is there is almost nothing that cannot be done (except on iOS which has several limitations related to the topic). The disadvantage, though, is this is a lot of work.
3) Leveraging an existing platform that might have been designed for a different purpose but can easily be used with minimal changes for your own purposes, and offers a nice compromise between options #1 and #2 (this will require some additional backend/middleware servers to add to your mix). Look at XMPP and Jabber as an example.
Once you have this piece of your architecture in place - receiving pushed data - the only missing item is invoking the handset's browser (or browser type component in your own native application) in response to the received payload.
** As possible alternatives it's worth noting that most mobile platforms allow your native application to directly interact with the handset's IMs or e-mails. For example, you can write code that intercepts a specifically formatted IM, with a small payload, and use that as a "poor man's push engine." I have put together little POCs (proof of concepts) for clients using this technique on Windows Mobile, BlackBerry, and Android (not sure what's possible with iOS in this regard) as it's quick and easy.
The hard part is the pushed data (but several available options on how to handle this requirement), the easy part is invoking the browser.

How to send data from one android device to another?

Hi all I was wondering what options do we have to exchange data between two different android devices?
For example, User-A and User-B both installs my app. I would like User-A to send data (possibly just a simple message or user-A's location info) to User-B.
The functionality I would need is similar to the functionality that WhatsApp has. However unlike WhatsApp, I do not have a server and I was wondering if we could do data exchange between two different android devices without a server?
I was thinking we build it atop SMS or something.
Options for exchanging information between devices are the following:
Bluetooth - this would be between two devices in the near vicinity
TCP/UDP IP connection - this would be using TCP to open a socket directly to another server socket. That could be hosted on the phone or a shared server. There are pros and cons to both.
The pros of bluetooth would be no need for a central server. The big downside is this means you can only exchange data between two people standing within 20 meter range. The other downside is you have to pair the devices which not everyone finds easiest.
You can use TCP/IP connections to exchange data just like any client-server program you write on a traditional computer. This could be used no matter if your phone is using 3G/4G/WIFI/EDGE or future radio protocols. The problem is the IP address of the phone might not be globally reachable. The IP address of the phone might be a non-routable like a private IP. They might be behind a firewall or NAT address.
This is where a central server is probably needed to either exchange IP addresses for users, or serve as a common location for clients behind infrastructure that could block. This is where protocols like SWIFT come in handy for jumping firewalls. Even with things like P2P you still run into these types of issues with non-accessible devices, and tricks like this have to be used to crawl around them. Unfortunately, that means you probably need a central server even with the P2P model.
Without an external server to keep a list of all connected clients, you would need to implement communication in a P2P fashion. Depending on the needs of your app, you could have the user type in the IP address/email/phone number of the other user they want to exchange data with.
If you wish to use a server approach, you can sign up for Google's App Engine which has good Eclipse integration as well as a plugin to easily interface with an Android app. This would give you an infrastructure option without initially (or maybe never depending on how high you scale) having to put down any money.
Google gave a good IO talk showing an example of a web app that can easily communicate with an Android app. You could extend this to do what you are looking to do.

Categories

Resources