I use a classic singleton pattern to store data I get from webServices inside my initial activity (splash activity) and then access it throughout the application.
I have a splash activity which leads to MainActivity which is the sliding menu activity with fragment inside it , the initial fragment is a fragment that contains support map fragment.
my issue is with the data stored inside the singleton , sometimes when the app goes to the background (pressing home and moving to another app) and then go recent apps and choose my application , the singleton's data is null which crashes my app.
I have spent hours checking if my singleton is written as should and what are the possible reasons for static data to become null if I didn't make it null myself .
Following my search I found a great and simple explanation, explaining when/why a static data can become null - Android static object lifecycle #Samuh answer and I quote
"So if you create an android application and initialize a static variable, it will remain in the JVM until one of the following happens:
1. the class is unloaded
2. the JVM shuts down
3. the process dies "
About #1 and #2 - I don't really know when these occur.
Regarding #3 - this is perfectly fine as if user will click my app from "recent applications" this will invoke the launcher activity in my case "splash activity" and this will get the data (up to date) from servers and store it again inside my singleton - perfect! , that's exactly what happens inside my other applications , the difference is I'm not using a sliding menu and fragments , only activities. Here in my case returning from background will not invoke the launcher Activity which is the "splash screen" but will invoke the MainActivity (the main sliding menu activity) along with the initial fragment , and when I try to access data from my singleton all data inside it is null, the singleton itself is not null because at the onCreate() of the fragment i use getInstance().I believe that this implies that the singleton was lost and now recreated with no data inside it , so if the process is killed why am I not returned to the launcher activity ?
Hope someone can help , thanks in advance.
My singleton class:
public class MySingleton {
// some private data members with getters/setters
private String x,y,z;
// the instance
private static MySingleton theInstance = null;
//private ctor
private MySingleton(){
//doing something
}
//get instance
public static synchronized MySingleton getInstance() {
if (theInstance == null)
theInstance = new MySingleton ();
return theInstance;
}
}
Your singleton is killed by the system, generally because it needs memory, or because the process is maybe too old.
What I suggest you is:
-Save data from your singleton, in shared prefs for example, so it can be easily recreated if needed. It generally works fine
-Save your variables by overriding OnSaveInstanceState in your Activity, and restore them when it is recreated.
An extended Application class can declare global variables. Are there other reasons?
Introduction:
If we consider an apk file in our mobile, it is comprised of
multiple useful blocks such as, Activitys, Services and
others.
These components do not communicate with each other regularly and
not forget they have their own life cycle. which indicate that
they may be active at one time and inactive the other moment.
Requirements:
Sometimes we may require a scenario where we need to access a
variable and its states across the entire Application regardless of
the Activity the user is using,
An example is that a user might need to access a variable that holds his
personnel information (e.g. name) that has to be accessed across the
Application,
We can use SQLite but creating a Cursor and closing it again and
again is not good on performance,
We could use Intents to pass the data but it's clumsy and activity
itself may not exist at a certain scenario depending on the memory-availability.
Uses of Application Class:
Access to variables across the Application,
You can use the Application to start certain things like analytics
etc. since the application class is started before Activitys or
Servicess are being run,
There is an overridden method called onConfigurationChanged() that is
triggered when the application configuration is changed (horizontal
to vertical & vice-versa),
There is also an event called onLowMemory() that is triggered when
the Android device is low on memory.
Application class is the object that has the full lifecycle of your application. It is your highest layer as an application. example possible usages:
You can add what you need when the application is started by overriding onCreate in the Application class.
store global variables that jump from Activity to Activity. Like Asynctask.
etc
Sometimes you want to store data, like global variables which need to be accessed from multiple Activities - sometimes everywhere within the application. In this case, the Application object will help you.
For example, if you want to get the basic authentication data for each http request, you can implement the methods for authentication data in the application object.
After this,you can get the username and password in any of the activities like this:
MyApplication mApplication = (MyApplication)getApplicationContext();
String username = mApplication.getUsername();
String password = mApplication.getPassword();
And finally, do remember to use the Application object as a singleton object:
public class MyApplication extends Application {
private static MyApplication singleton;
public MyApplication getInstance(){
return singleton;
}
#Override
public void onCreate() {
super.onCreate();
singleton = this;
}
}
For more information, please Click Application Class
Offhand, I can't think of a real scenario in which extending Application is either preferable to another approach or necessary to accomplish something. If you have an expensive, frequently used object you can initialize it in an IntentService when you detect that the object isn't currently present. Application itself runs on the UI thread, while IntentService runs on its own thread.
I prefer to pass data from Activity to Activity with explicit Intents, or use SharedPreferences. There are also ways to pass data from a Fragment to its parent Activity using interfaces.
The Application class is a singleton that you can access from any activity or anywhere else you have a Context object.
You also get a little bit of lifecycle.
You could use the Application's onCreate method to instantiate expensive, but frequently used objects like an analytics helper. Then you can access and use those objects everywhere.
Best use of application class.
Example: Suppose you need to restart your alarm manager on boot completed.
public class BaseJuiceApplication extends Application implements BootListener {
public static BaseJuiceApplication instance = null;
public static Context getInstance() {
if (null == instance) {
instance = new BaseJuiceApplication();
}
return instance;
}
#Override
public void onCreate() {
super.onCreate();
}
#Override
public void onBootCompleted(Context context, Intent intent) {
new PushService().scheduleService(getInstance());
//startToNotify(context);
}
Not an answer but an observation: keep in mind that the data in the extended application object should not be tied to an instance of an activity, as it is possible that you have two instances of the same activity running at the same time (one in the foreground and one not being visible).
For example, you start your activity normally through the launcher, then "minimize" it. You then start another app (ie Tasker) which starts another instance of your activitiy, for example in order to create a shortcut, because your app supports android.intent.action.CREATE_SHORTCUT. If the shortcut is then created and this shortcut-creating invocation of the activity modified the data the application object, then the activity running in the background will start to use this modified application object once it is brought back to the foreground.
I see that this question is missing an answer. I extend Application because I use Bill Pugh Singleton implementation (see reference) and some of my singletons need context. The Application class looks like this:
public class MyApplication extends Application {
private static final String TAG = MyApplication.class.getSimpleName();
private static MyApplication sInstance;
#Contract(pure = true)
#Nullable
public static Context getAppContext() {
return sInstance;
}
#Override
public void onCreate() {
super.onCreate();
Log.d(TAG, "onCreate() called");
sInstance = this;
}
}
And the singletons look like this:
public class DataManager {
private static final String TAG = DataManager.class.getSimpleName();
#Contract(pure = true)
public static DataManager getInstance() {
return InstanceHolder.INSTANCE;
}
private DataManager() {
doStuffRequiringContext(MyApplication.getAppContext());
}
private static final class InstanceHolder {
#SuppressLint("StaticFieldLeak")
private static final DataManager INSTANCE = new DataManager();
}
}
This way I don't need to have a context every time I'm using a singleton and get lazy synchronized initialization with minimal amount of code.
Tip: updating Android Studio singleton template saves a lot of time.
I think you can use the Application class for many things, but they are all tied to your need to do some stuff BEFORE any of your Activities or Services are started.
For instance, in my application I use custom fonts. Instead of calling
Typeface.createFromAsset()
from every Activity to get references for my fonts from the Assets folder (this is bad because it will result in memory leak as you are keeping a reference to assets every time you call that method), I do this from the onCreate() method in my Application class:
private App appInstance;
Typeface quickSandRegular;
...
public void onCreate() {
super.onCreate();
appInstance = this;
quicksandRegular = Typeface.createFromAsset(getApplicationContext().getAssets(),
"fonts/Quicksand-Regular.otf");
...
}
Now, I also have a method defined like this:
public static App getAppInstance() {
return appInstance;
}
and this:
public Typeface getQuickSandRegular() {
return quicksandRegular;
}
So, from anywhere in my application, all I have to do is:
App.getAppInstance().getQuickSandRegular()
Another use for the Application class for me is to check if the device is connected to the Internet BEFORE activities and services that require a connection actually start and take necessary action.
Source: https://github.com/codepath/android_guides/wiki/Understanding-the-Android-Application-Class
In many apps, there's no need to work with an application class directly. However, there are a few acceptable uses of a custom application class:
Specialized tasks that need to run before the creation of your first activity
Global initialization that needs to be shared across all components (crash reporting, persistence)
Static methods for easy access to static immutable data such as a shared network client object
You should never store mutable instance data inside the Application object because if you assume that your data will stay there, your application will inevitably crash at some point with a NullPointerException. The application object is not guaranteed to stay in memory forever, it will get killed. Contrary to popular belief, the app won’t be restarted from scratch. Android will create a new Application object and start the activity where the user was before to give the illusion that the application was never killed in the first place.
To add onto the other answers that state that you might wish store variables in the application scope, for any long-running threads or other objects that need binding to your application where you are NOT using an activity (application is not an activity).. such as not being able to request a binded service.. then binding to the application instance is preferred. The only obvious warning with this approach is that the objects live for as long as the application is alive, so more implicit control over memory is required else you'll encounter memory-related problems like leaks.
Something else you may find useful is that in the order of operations, the application starts first before any activities. In this timeframe, you can prepare any necessary housekeeping that would occur before your first activity if you so desired.
2018-10-19 11:31:55.246 8643-8643/: application created
2018-10-19 11:31:55.630 8643-8643/: activity created
You can access variables to any class without creating objects, if its extended by Application. They can be called globally and their state is maintained till application is not killed.
The use of extending application just make your application sure for any kind of operation that you want throughout your application running period. Now it may be any kind of variables and suppose if you want to fetch some data from server then you can put your asynctask in application so it will fetch each time and continuously, so that you will get a updated data automatically.. Use this link for more knowledge....
http://www.intridea.com/blog/2011/5/24/how-to-use-application-object-of-android
I'm confused on this. Just started android and have a long form that needs multiple activities to bring together an object. I would like to pass the object from activity to activity to build it. After reading the many posts and blogs and the Android Dev pages, it seems for non-persistent data, the best bet is to subclass application or create a singleton. I reviewed this post openFileOutput not working properly inside a singleton class - ideas/workarounds? and now my question is this, Why doesn't a singleton ever get recycled? If we createSingleton() in Activity A, then move to Activity B and we are never passing a reference to the singleton, how does the garbage recycler know that we are going to come back to it again? it seems to me that when Activity A is recycled and we have moved to Activity B that the singleton would die..
If we look at the following singleton..
public final class SomeSingleton implements Cloneable {
private static final String TAG = "SomeSingleton";
private static SomeSingleton someSingleton ;
private static Context mContext;
/**
* I'm private because I'm a singleton, call getInstance()
* #param context
*/
private SomeSingleton(){
// Empty
}
public static synchronized SomeSingleton getInstance(Context context){
if(someSingleton == null){
someSingleton = new SomeSingleton();
}
mContext = context.getApplicationContext();
return someSingleton;
}
public void playSomething(){
// Do whatever
mContext.openFileOutput("somefile", MODE_PRIVATE); // etc...
}
public Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException("I'm a singleton!");
}
}
And we create an instance of it through getInstance(), the class places a single instance of the class into static field, someSingleton. Why is this instance never recycled? If the answer is, "Static fields are never recycled?" What keeps us from using up all of our memory if we have many of them? Simple design considerations? This seems risky if we are using lots of contributed libraries that we have no idea how many static fields are out there. I just have this feeling that there is some fundamental rule that I am missing in OOP as a newb.
The general pattern is to put a reference to your singleton class in a static field. Static fields are not tied to a particular instance so they stick around until the JVM process is alive. It doesn't really matter how many activities access it. If you need to 'recycle' the singleton, maye you don't really need to use a singleton? Or provide an explicit close()/open() etc. methods.
I think the reason that your Singleton's are not getting recycled is because activities in Android aren't destroyed when you think they are.
You pose a question like 'what happens when we move from activity A to B'. But when you do that in Android, Activity A is very rarely destroyed. It usually just goes into the onPause() state. Thus, your Activity A will still be (mostly) intact if and when a user decided to hit the back button enough times to get back to activity A.
I need to keep a reference to an object between different activities. The two said mentions seem to create new objects from activity to activity. This is a problem because changes to the object in the "child" activities don't persist once the parent activity gets focus. My solution to this was just to create a static getter in the parent-most activity which the child activities call and work with. Is this the incorrect way to go about this?
If you want to share a single instance of an object between activities, you can create a singleton class. The only thing wrong with using your parent-most activity class to implement the singleton might be that it might violate the single responsibility principle.
You can make your object persistent throughout the whole application lifecycle by making it a field in your Application-derived class.
public class MyAppication extends Application {
private Object mMyData;
public setData(Object data) {
mMyData = data;
}
public Object getData() {
return mMyData;
}
}
Then ((MyApplication)getAppllication()).setData or getData()
This way you can exchange data within the application because MyApplication will always exist.
You'll also have to add MyApplcation to manifest
You should create a Singleton, this has a single instance whenever you talk to it. (Just like your describing).
Here's one I made earlier : https://stackoverflow.com/a/6539080/413127
A few days ago I've discovered that singleton can become anti-pattern in Android. My singleton (class with private constructor and instance stored in static field) was deleted (instance was deleted despite the fact other activities were still using this singleton (via getInstance() method) so another instance had to be created ) because Activity from which it was first invoked was deleted (after invoking finish for only this one activity).
I've read already how this problem can be resolved however I've also just read "Effective Java". There is said that "Single-element enum type is the bast way to implement a singleton".
So now I'm wondering what would be the lifecycle of singleton created this way in Android application? Would it be the same like in case of "standard singleton implementation" so after destroying activity from which it was invoked the first time it will be destroyed (even if it used also in other activities)?
I'm not asking about proper android singleton implemenation or the singleton pattern itself (is it pattern or anti-pattern etc) but I'd like to know what be the lifecycle of such enum singleton object and when it will be destroyed.
In all cases, the classes you use are tied to the ClassLoader that loaded them. This is true in Java in general, not just Android. Android will isolate activities by using new ClassLoaders each time -- at the least, it doesn't promise it won't, and it does as far as I can tell.
Any singleton, or other class-level state, is tied to the Class which is tied to the ClassLoader. This is why your state "disappears"; it's actually that your calling code is seeing a new Class in a new ClassLoader.
So, your enum-based trick, or anything else along these lines, would have exactly the same behavior. You just can't "persist" activity information this way. You can and should write to a SQLite DB. You could probably stash it in the SharedPreferences too.
The application object is a good location to store information which needs to be accessible to various activity or service instances. You can retrieve it like this (where this is an Activity or Service):
private MyApplication app;
in onCreate(...){
...
this.app = (MyApplication) this.getApplication();
...
}
Remember to set the name also in the manifest:
Set the attribute "name" of the "application" tag:
The value is the path to the class relative to the package of your app.
The application object is created when the app is started, you can initialize like in an activity or service in it's onCreate() method.
One thing to remember: The application object can survive closing your "last" activity. In this case you may get the same application object with the state from the previous interaction with your app. If this is a problem you must somehow detect the initial start of your app (e.g. using a special launcher activity without UI, which initializes the application object and then starts a new intent.
BTW, the same may happen with singletons if they have not yet been lost to garbage collection.
My secure singleton implementation is like that:
I create a singleton class which has an attribute of boolean 'didReceiveMemoryWarning';
public class SingleTon(){
public boolean didReceiveMemoryWarning = true;
...
...
}
In application first screen(It is exactly first launch screen)(I have a splash screen that is visible 3 sec)
SingleTon.getInstance().didReceiveMemoryWarning = false;
And in every Activity's onCreate() method, check this boolean data,
#Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
if(SingleTon.getInstance().didReceiveMemoryWarning){
{ Load your data from local to your SingleTon class,
because your app was released by OS};
}
}
it is my implementation.