Porting C code which uses fork() to Android - android

I have written an application in C which I am porting to Android using the NDK. This application makes use of fork() to create child processes periodically to perform some tasks. These child processes communicate with the main process through pipes and then exit after their task is complete. The amount of data transferred through pipes can be hundreds of kilobytes.
I'm attempting to keep the parent process very lean in terms of memory and CPU consumption and also very stable, but the child processes can sometimes take up a significant amount of resources. It doesn't matter much if the child processes are sometimes killed by the system due to this. The parent process can gracefully handle these conditions.
For this use case, is it fine to keep the fork()s in the native code? Is there a better way of doing this through Android's framework?
Thank you.

Message from goddess:
http://markmail.org/message/ruqp2t6gvhnhv654
So you better leave it off. It could open a full can of worms with process management. And there is nothing worse as misbehaving runaway native process sucking processor cycles and battery juice. Better solution would be several android abstractions like services and broadcast receivers in same process passing data around by means of static classes or firing intents

Related

In Android, should a contact sync adapter run in a separate process?

In my app, I'm using a contact sync adapter, but it has a lot of information that it shares with the main app. There are settings that the adapter needs to work proplery (like login information and if the user changes any sync settings), so I currently have it running in the same process, and it communicates with the main ap using getApplicationContext(), and then I have some shared variables in the Application that the sync adapter is using during the sync process.
But in the training document, and a few tutorials online, the sample adapter is set up to run in its own process -- it's using android:process=":sync" in the manifest. Is that necessary? And if it does run in a separate process, how can I communicate back to the main app?
In our context, due to fast searching requirement, we are using remote service to hold a huge database in memory.
The reason we are using remote service, instead of local service is that, we believe running the service in separate process, will make us harder to hit maximum memory per process limitation (The limitation is vary based on different devices and OS version).
In our initial design, we are using AIDL. Later, we switch to Messenger. I cannot recall the reason behind. I will check back our source code history log to figure out why. But, I think it is mostly, Messenger is less complicated than AIDL, and we do not need the multi-thread capability provided by AIDL.
Running Service in its own process may be helpful
1) if you want your service to withstand your main app's process destruction (but START_STICKY is more than enough for that case),
2) if you'd like to designate this process for all "sync" tasks of your application (as stated in the tutorial),
3) if you want other apps to use your Service.
To communicate with the Service running in separate process, you use Bound Services.
However, running Service in separate process increases the complexity of communicating with it, so consider if any of cases mentioned above relates to your app purposes.
I think it should be separated, but it's not required.
In general, separating a Service process is well worth to consider if it may be used independently from system components or other applications. In this perspective, the lifecycle of the process should be managed independently from other components such as Activity in the same app, so Android can mark which process is currently used easily and precisely to decide which process to be killed in case of a memory shortage. Also the service can keep running even if the front activity crashed unexpectedly.
It's hard to maintain sharing data between separate processes. For login credentials and preferences, I guess you may go with a combination of SharedPreferences and OnSharedPreferenceChangeListener.
When the application starts, it may cache different things, in particular for the UI. By splitting the sync logic in a different process, you allow the UI process to be killed when the device is running low in memory, which will free these UI caches.
Hence, this technique is primarily of interest to apps that run services for a long time. Typical examples:
the service that plays music in a music app
the service that uploads the video in Youtube
However:
this increases the complexity of the app
if done incorrectly, it can actually increase the overall memory footprint of the app

What are the Advantages and Disadvantages of running a service in different process?

I want to run a long running Service in the background in my App.so i am using Service for that but in the service there is tag called android:process So my service is like..
<service
android:name="com.purpleshade.services.ApplicationService"
android:process=":myprocess">
Question::
So i want to know about the Advantages and disadvantages of running a Service in different Process.
Off the top of my head...
Downsides:
You have to use interprocess communication to talk to it, which is slower than if it were in the same process as the client.
Debugging becomes more difficult, as now there is a different process you potentially need to attach to.
If it crashes, it crashes independently of your main process. One might argue this is an upside too though. Something to consider.
Special care is needed in any initialization code, such as in your Application instance. There will be an instance of the Application context for each process. So, for example, if you are initializing something like GCM, you probably want to make sure only doing so in the main process. (Referring to this, specifically: http://developer.android.com/reference/android/app/Application.html)
Upside:
The only real upside I can think of, and really the only time I've used a separate process, is that you get a whole new heap space to work with independent of the main process. Useful if you need this memory for some operation.
Con : Using android:process=":myprocess" is really bad if you want to update values or communicate with the app, none of your values will get updated.
Be careful while using it. (It took me a 2 days to figure out)
Pro : Doesn't block the app while running long process.

Android mail client, remote process or not

As relatively new to the android platform I was given the task of implementing a email client. For this I want to use an service that allways run in the background (client should allways receive emails as soon as the server gets them, requirement from the customer).
Now I've looked into the Service's in android, but can't seem to find any good answer on whether or not the Service should be local or remote.
What would the main advantages/disadvantages be with choosing one over the other? Bare in mind the Service must be running at all times. I know, I know. BAD. But it is essential to core features of the application.
First, the correct/efficient way to do instant notifications from a remote server like this on Android is to use Google Cloud Messaging. GCM lets you remotely wake up the device by sending an Intent to your application, which you can then use as a signal to fetch the message from the server, post a notification to the status bar, etc.
Doing what you're describing with an eternally running service will have a significant effect on battery life unless you get everything exactly right. Keeping the phone awake all the time is not a viable option. Use GCM and do not roll your own solution for this.
But since your question was more general about whether to run a service in a separate process, in general simpler is better and in this case simpler means running in the same process. You'll have access to all of the various elements of your app's process in memory and in general you will probably have a much easier time. Your events will all happen on the same main thread's Looper. Everything will be much more straightforward.
If you don't already have a very good reason for using a separate process for your service, you should run it in the same process.
Generally I don't know the reason why you can want to use another process. If you will - you'll have to deal with Inter-process communications, with all this AIDL, Parcels etc.
And if you will keep the same process - it will be much easier to transfer the data between your components.
The only reasons to make several processes I think is to try to avoid Android Heap budget limitation. You can try to move heavy objects between processes and try to double your limit. However I think you don't need this, also it's bad way too.
So I will recommend not to play with processes and keep things as simple as possible.
Good luck

When will one need to create a separate process in a Application?

I was reading a article in Android developer blog Process and Threads which talks about creating new process for specific component of Application. But I failed to understand when will creating a new process in my application becomes a absolute need. Could you please help me understand following doubts I have in this regard.
When as a developer I should feel I need to have a separate process for a Android component/s?
Does introducing a new process has any side effect on application's overall performance?
Any other info is greatly appreciated.
Thanks,
SKU
Having a separate process can be useful if there are components of your application that do not necessarily need to both be running to be useful to the user, and the background task is critical to application "correctness" (either now or in the future). The classic example of this is an app that has a service where the service saves or uploads some data that is critical to your application (critical meaning the only way to get the data back is to have the user re-enter it!). The service might be responsible for doing something like uploading or saving data, while the activity is just the interface for the user. So developers should decouple these two components to prevent problems that may arise from my next point..
Android was designed to run in a resource (especially memory) constrained environment, so processes deemed unimportant are killed periodically to open up memory for important ones by the "low memory killer" (LMK) (if you Google this you'll get tons of information on the topic). Things like foreground processes are understandably given a higher priority since they're currently in use, but they're sometimes killed off as well for reasons like consuming too much memory. Now, imagine you need to save off some data to a database after the user does something in the app and you use a service to do so to ensure that it is done even if the user navigates away from the app. Unless you create the service in its own process the process containing both the activity and the service is likely to be killed since the process belongs to a non-foreground activity.
However it is not always necessary to place the service in its own process, oftentimes simply giving the service its own thread will suffice; it's very application specific. I would only place a service in its own process if it took longer than maybe a few seconds (long enough for the user to navigate away from my application and for the LMK to step in) to perform some task in the background and that task related to the "correctness" of my application (I.E. saving data for later). For something like caching, stick to threads, since if the process gets prematurely killed you can just recreate that data later.
Another reason to have a separate process is if you're running a global service (a service that can be used by applications other than your own) that maybe you provide an interface with via an Activity for configuration.
As for the performance question, there will definitely be a performance hit for something like this. Interprocess communication is not cheap, so you should really only use a separate process if you fit into a specific use case, like the ones mentioned above. Also, there's a certain amount of memory overhead for maintaining a process, so that's another performance hit.
1.)You need to do something on seperate process or thread when you don't want your app to behave slowly. As by introducing threads you force your app not to run on UI thread. Thus making your app responsive to other events. For Example : you can use threads when you have to fetch some data from web service so that it happens in background and doesn't effect your app.
2.)Threads should not be used..We should use AsyncTask or loaders rather in android.
1.) In android 4.0 (and possibly 3.0, not sure though) The device does not let you use the HTTP Agent in the main thread, for this slows the UI..
This is when threads come in handy.
Also with the use of functions that need alot of cpu, if these are run in the UI thread, the UI will lag and not respond until the function finishes.
2.) as stated at 1, it will actually improve the visual performance of your app ;)

Advantages of using Binder for IPC in Android

What is the advantage of using Binder for IPC over (Semaphores , Message Queue, PIPES) in Android stack?
Old question (and likely unmonitored by the poster), but worth answering:
A) All filesystem-based or filesystem-representable IPC mechanisms (notably pipes), can't be used because of a lack of a world-writable directory, where all processes can mkfifo/create the filesystem/socket representation of their IPC port (/dev/socket notwithstanding, which is used for system processes, e.g. rile, zygote, and their ilk).
B) None of the suggested mechanisms have the capability of "service location" which is required for Android. In UNIX, there's an RPC portmapper, and Android needs similar functionality. Enter: The ServiceManager, which can use binder to register as a context manager, to register/lookup service handles on the fly
C) There is an extensive need for serialization - be it intents, or other messages. Binder provides the parcel abstraction, which can be used for data marshaling by the Parcel.java.
D) SysV has other issues than Mr. Lambada's answer which are more paramount, notably race conditions, and lack of authorization.
E) Message queues and pipes can't pass descriptors. UNIX Domain sockets may, but can't be used because of (A) (again, unless you're root/system, like zygote, rild, installd..)
F) Binder is really lightweight, and has built-in authorization mechanisms. It also has nifty features like waking up the recipient process, as well as memory sharing, which the other mechanisms simply don't have. (and remember, no mmap(2), because of the file problem in (A) for named mappings).
and - let's not forget
G) Binder was started at Palm (ah, nostalgia) (q.v. OpenBinder). Ex-palmers got to Android, and brought their code in with them.
From the ndk's docs/system/libc/SYSV-IPC.html file:
Android does not support System V IPCs, i.e. the facilities provided by the following standard Posix headers:
<sys/sem.h> /* SysV semaphores */
<sys/shm.h> /* SysV shared memory segments */
<sys/msg.h> /* SysV message queues */
<sys/ipc.h> /* General IPC definitions */
The reason for this is due to the fact that, by design, they lead to global kernel resource leakage.
For example, there is no way to automatically release a SysV semaphore allocated in the kernel when:
a buggy or malicious process exits
a non-buggy and non-malicious process crashes or is explicitly killed.
Killing processes automatically to make room for new ones is an important part of Android's application lifecycle implementation. This means
that, even assuming only non-buggy and non-malicious code, it is very likely that over time, the kernel global tables used to implement SysV IPCs will fill
up.
At that point, strange failures are likely to occur and prevent programs that use them to run properly until the next reboot of the system.
Binders are used to to communicate over process boundaries since different processes don't share a common VM context => no more direct access to each others Objects (memory). Both parties within the same process (usually things that are within the same app) means (imho) that you should not use Binders since they slow down / complexify things unnecessary.
Binders are usually not used directly but rather via the "Service" or the "Messenger" classes. While communication with a Service is done via a full api of functions, the communication with a Messenger has to use "Message"s. Messengers a lot simpler to implement.
Apart from using Binders you can use anything that is available from any VM instance like "LocalSocket"s, Files, ContentProviders, Intents, ...
Binders are not ideal for transferring large data streams (like audio/video) since every object has to be converted to (and back from) a Parcel. All the conversion takes time. Much better in that case would be a LocalSocket for example.
Binders are used to enable remote procedure calls. You could implement RPC using the synchronization tools you mention but you would also need to write a lot of code to make it come together... with a Binder (normally only used within an Android Service) you have much less code to write; barely more than your actual remote functions.

Categories

Resources