Android Async Data Loading Methods - android

If I need to asynchronously load some data via HTTP (or whatever) in order to update the UI, I have a few options when writing an Android application (among many others that I'm sure I missed):
Use a regular thread and a handler to update the UI.
AsyncTask
Use and IntentService, and use either a callback or broadcast the results via an Intent.
Using Loaders.
From what I understand, an IntentService is not tied to an Activity's lifecycle, so any changes to orientation, etc, will not impact the retrieval of data. Where this is not the case for an AsyncTask or thread fired off within an Activity.
The reason for the question, is that I just recently read about Loaders, and am confused as to their application. They seem to be more closely tied to a data source, where if the data source changes, then "transparently" everything is handled appropriately. Loaders also appear to be tolerant to configuration/orientation changes (I believe).
I've been currently using an IntentService to make RESTful service calls, and broadcasting the results to be received by appropriate Activities.
I'm assuming I could write an HTTP based Loader, but I'm not sure if this is the best use of this mechanism.
What are the advantages/disadvantages to using one of the async data loading methods over any other?

All of these mechanisms are simply options. There's no such thing as a one size fits all tool and so all of these different methods of completing the same task is a way to cover as many use cases as possible.
Ultimately, it's up to you to decide which method makes more sense for your scenario. But for a sort of generic explanation of what you should use...
Regular thread and a handler - Why when there are other, simpler, options?
AsyncTask - Since an AsyncTask will almost always depend on an Activity, use this when you need to load data asynchronously and you are 100% certain of how long it may take. Example: Executing an SQLite query.
IntentService/Service - Services are not bound to an Activity like an AsyncTask is, therefore, they are perfect for scenarios in which you may not know how long it will take to complete. Example: Downloading data from a web API and updating a database.
Loaders - Loaders are aimed at simplifying the process of loading data and populating it into UI. The nature of Loaders sort of assumes that the data you will be loading will be presented to the user as a list of some sort. Example: Downloading data and populating it into a ListView

Related

Is there any scenario where using AsyncTask is better than AsyncTaskLoader?

I am currently studying about Loaders and about how they could overcome changes such as screen orientation during application lifecycle, and so far, from what I have read, AsyncTaskLoader does the same job as AsyncTask and even better. Therefore, should not AsyncTask be considered obsolete or does it provide the developers with some hidden advantages?
I am currently studying about Loaders and about how they could overcome changes such as screen orientation during application lifecycle
The Architecture Components' support for view-models and LiveData is Google's current direction for addressing the problems that loaders tried to address.
AsyncTaskLoader does the same job as AsyncTask and even better
Note that AsyncTaskLoader uses an AsyncTask.
should not AsyncTask be considered obsolete
Yes, insofar as we have other patterns and libraries to use (e.g., RxJava, LiveData). That being said, AsyncTask, used correctly, is an OK option. The challenge is in using it correctly (e.g., from a retained fragment, with care to avoid interacting with the hosting activity on a background thread).
does it provide the developers with some hidden advantages?
Your argument seems to be "an ocean liner has more features than does a rowboat, so shouldn't we consider rowboats to be obsolete?". Ocean liners have their costs, and ocean liners cannot do everything that a rowboat can (e.g., travel in shallow water, be towed behind a truck).
Loaders were designed — to the extent that they ever had a "design" — to:
load data in the background, typically via an AsyncTask
retain that data across configuration changes
automatically deliver updates when the requested data happens to change
Not everything needs that. For example, the loader pattern targets read operations (where we actually "load" data), but it does not really help with write operations (where we are changing the data). Yet we still want to do write operations asynchronously and find out about the results even if we undergo a configuration change. You can squeeze write operations into loaders, but it is not a natural fit. Using an AsyncTask or something else, instead of a loader, would be more natural.
Think this way,
The AsyncTaskLoader can be used at any place where the AsyncTask is.
The main advantage is the ability to persist between the lifecycles.
If you use an AsyncTask and call a Network Operations to get some data from the Internet and the User rotates the phone, your AsyncTask will have to start the task again to grab the data, and this could be potentially dangerous to your application because you could have a memory leak.
So, in any case, Loaders are an evolution of the AsyncTask, they are basically improved AsyncTasks.
I believe that the AsyncTask is still alive because when you are performing some simple task in the Background Thread you can do this more simply using an AsyncTask with an anonymous inner class, and deliver the results right away to the UI Thread.

When should I use Loaders? and when asynctask? (Android)

I am still confused. I have read several tutorials of loaders and asynctask in Android but I can't understand some differences in some cases. For example:
Your app can't continue without the information which is provided by Asynctask or Loader
If you need information from MySQL database, what will be better?
And...What if you need information from SQLite database?
Maybe, you might need data from a url.
Your app can continue without the information which is provided by Asynctask or Loader
If you need information from MySQL database, what will be better?
And...What if you need information from SQLite database?
Maybe, you might need data from a url.
If you consider we must mention more differences or other case, you can write it.
Well, both of them are used to perform asynchronous operations, it doesn't really matter if your app can or can't continue without the information. Even if your app can continue wihtout the data, you still need to process it asynchronously to avoid an ANR message.
One reason to choose a Loader or an AsyncTask would be if you need to get data updates. The advantage of the Loaders is that they keep track of the data you are accessing and deliver new results when the data changes.
Other difference is that with Loaders you don't have to worry about configuration changes (orientation change e.g.). The LoaderManager takes care of that for you. With AsyncTask you need to take care of that yourself.
And there is even an AsyncTaskLoader, that does what AsyncTask does but with the benefits of Loaders.
The advantage of AsyncTask is that is very simple to use. If you don't need to load or monitor data, but just process something in the background. AsyncTask is still a good choice.
Cursors are simply used to reconnect to the last cursor onec it has been interrupted for a reason. They are usually designed to use in fragments or activitys.
Documentation for Loaders:
They are available to every Activity and Fragment.
They provide asynchronous loading of data.
They monitor the source of their data and deliver new results when the content changes.
They automatically reconnect to the last loader's cursor when being recreated after a configuration change. Thus, they don't need to re-query their data.
Asynctask are more likely a wrapper which contains a whole subset of methods to access the mainUI and background thread.

When to use Android Loaders

Loaders
monitor data source and deliver new results
After a configuration change : no need to re-query the data
I read the android guide about Loaders.
I read Alex Lockwood 4 parts tutorial . Tested his sample app too.
Tried to read the Google App for I/O 13, there's a Stream feature and reading its code find out it uses Loaders since it provides code to create a StreamLoader. Here is the Link
I suppose they use it to monitor for new data and add them to their view.
Same for Alex's app. There's an observer and when there is new data entries triggers a refresh for the UI.
So far it seems to me, Loaders are ideal choice for a "livescore" app. When there's a new update ( which means a new data entry ) it appears on your screen.
Maybe something like Twitter. New messages for you, custom Observer to notice for changes, custom Loader brings the data and an adapter to display them. No need to "pull-to-refresh".
But then again Twitter has its own RESTful API which kinda does the same job. No need for a pointer to the new data. ( don't know how they do it but I guess somehow the "push" new data to your device ).
So my question is :
Loaders are best option when we want to observe a data source and change our view so it will display the new data?
Are there any examples/app I can check dealing with that logic : monitor the data source -> get the data -> refresh UI
Any characteristic cases ( like the one with the "livescore" previously mentioned by me ) that when we have to deal with them we have to choose Loaders?
The second part of the Loaders ( configuration change, keeping the data ) I think its clear. No one want's to re-download an Image gallery when the user rotates the device.
Thank you and excuse my confusion
The best way I can describe a Loader is a Handler that is always on. Both Loaders and Handlers pass data between objects.
I agree with what you said about the "livescore" app.
The Loader monitors the source of their data and delivers new results when the content changes.
To answer your questions:
1) Loaders are best option when we want to observe a data source and change our view so it will display the new data?
A: Yes. if your data source is constantly updating. For example, like a stock-ticker app. If your data isn't constantly updating, then no, don't use a loader. For example, if your data source is only retrieved once, then there's no need for a Loader.
2) Are there any examples/app I can check dealing with that logic : monitor the data source -> get the data -> refresh UI
A: https://www.youtube.com/watch?v=3d9BeWqlfTk
Yes, they are what you want to use for the flow you're describing. Tangentially, there's also AsyncTasks and Services that have similarities.
AsyncTasks
Description (from docs):
AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most.)
Caution: Another problem you might encounter when using a worker thread is unexpected restarts in your activity due to a runtime configuration change (such as when the user changes the screen orientation), which may destroy your worker thread. To see how you can persist your task during one of these restarts and how to properly cancel the task when the activity is destroyed, see the source code for the Shelves sample application.
If you specifically just want a wrapper to basic threading boilerplate, use an AsyncTask otherwise I'd suggest you use an AsyncTaskLoader if you need a general purpose way to run intensive operations in an Activity or Fragment. You get the same benefits from AsyncTask, but it handles lifecycle issues for you. There are also specialty loaders, such as CursorLoader that will are made to handle specific data sources and have conveniences for interacting with certain UI elements.
Services
Description (from docs):
A Service is an application component that can perform long-running operations in the background and does not provide a user interface. Another application component can start a service and it will continue to run in the background even if the user switches to another application. Additionally, a component can bind to a service to interact with it and even perform interprocess communication (IPC). For example, a service might handle network transactions, play music, perform file I/O, or interact with a content provider, all from the background.
You would use a service to handle data being pushed to a phone. Otherwise, the user would have to open your app to get any pushed data. Services do not interact with your UI. So a common design pattern is to use a Service to gather data from a server (whether pushed real time or if you poll) and store it in your database for use both when your app is opened or when not. There are many other use cases for Services, but this one is probably the most popular.
Conclusion
So no, you aren't required to use a Loader to load data or do long running operations on a background thread and pass the results (or progress) to your UI thread, but they are the best option for most use cases.

Should Loaders be used to access web services?

For what I understand, the Loader framework is geared towards accessing data stored locally in a ContentProvider / SQLite database. We have the CursorLoader class that handles this use case quite well.
But I wonder if it's practical to use the Loader framework to write classes extending Loader / AsyncTaskLoader to access remote web services (e.g. a REST web service)? I always thought that this framework is a bit too rigid and confusing (lack of proper documentation) for this use case. I prefer handling REST calls in more regular way, using AsyncTasks / Services. But recently I've found some articles that used AsyncTaskLoaders and began to wonder.
So why would anyone use Loaders to access Web Services? The only advantage I see here is that Loaders retain their results automatically. There's no Cursor here to manage afterwards.
Realistically, you probably want to use a networking library like Volley. This has some nice features like request batching and image caching. Nonetheless, for the sake of argument lets compare Service, Loaders and AsyncTask.
Services are the way to go if you want to allow the loading to continue while changing Activities or backgrounding your application. Or, if you want to export your service so multiple applications can use it. Otherwise, use a Loader or AsyncTaskLoader.
Loaders have a few advantages over AsyncTasks.
They are less likely to cause crashes by executing code after the Activity has finished, since they are aware of the android lifecycle.
The design discourages having references to Views or Activities. This reduces the likelihood of forcing the Activity to stay in memory after it has already finished.
Monitor the data source for changes and trigger callbacks when they occur
They have built in caching that can be useful after rotations. For Cursors, the CursorLoader automatically reconnects at the correct position to the last Cursor loaded
However, they also have disadvantages
The API is extremely more cumbersome than AsyncTask. Especially if you care about compatibility with older versions of Android
You are already storing UI state inside onSaveInstanceState(), so using the Loader's causes you to save state in multiple ways. This can be confusing to read and understand. Especially if you end up mixing retained fragments into the mix.
The Loader caches the loaded result, not the UI state that you actually need
I'm assuming you are just reading from web services, not writing. If you are performing updates to a web service and you need to see the service's response, then this changes things. Using an AsyncTask could prevent you from getting the response if the it is received during a rotation.
There are cases where Loader is suitable for webservices: When your server can send push notifications back to client to notify that data is changed.

Is using AsyncTask still recommended for loading listView items in the background?

Background
I've heard that there are some new solutions for loading data in the background which are more recommended than AsyncTask (like loaders).
The problem
AsyncTasks are great and easy to use. However, it has some limitations:
The class itself has to be modified since it's limited by the number of pending tasks (about 256 or so). Of course, in a listView's adapter, I always cancel a task if it's not needed(for example when I need to update a view that was used for a different item).
I also have to cancel them all (or handle in a different way) when the activity/fragment is being re-created.
Because of 1&2, I need to manage them and have a reference to all of them
AsyncTask uses a queue of tasks, and sometimes I need to use a stack instead, so I had to create my own class of AsyncTask that uses a stack instead.
The question
Are there alternatives for AsyncTask?
I know this was asked in some posts before (like here), but I was thinking if there is a new general way to load data in the background which replaces the asyncTask.
About Loaders, I think the idea is that they are used for databases and contentProviders, but can they also be used for loading (for example) data from the Internet (like images files) ?
There is also a nice sample made by google (here, called "bitmapFun"), which according to what I see uses AsyncTask (and even extend it, maybe because of the same reasons I've mentionsed) . But maybe I'm missing there something too?
Maybe you should consider reviewing your approach, the need you have for performing several updates depending on the view and cancel all the pending tasks from the previous views gives the impression that you are performing the load of data individually for every view that needs to be created.
In a list view with a list adapter, the usual approach is to load a portion of the data (either as list of ValueObject or as Cursor from multiple database rows) paginated on demand or in one goal, not item by item. So if you wish to update the next page, you basically perform one single operation, either using AsyncTask or Loaders to fetch the new items to the model then making it available for the UI to display them. This way, you will be applying MVC, and you won't have several pending tasks to cancel and control, and your structure would be more solid and easier to manage.
About the alternatives, If you're dealing with database, the most straightforward way is to use the CursorLoader, i.e. the loaders instead of AsyncTask, but if you're dealing with data that comes from the network or filesystem, you're kinda free to choose from the variety of other options available. AsyncTask is much more simpler to use, mostly recommended for simple things or one shot queries. But you can also use Loaders for such tasks as well, see AsyncTaskLoader.
Yes.
Loaders are managed AsyncTasks. If you are not using a Loader, you are probably missing the management that they require.
AsyncTasks (and Loaders) are a pretty bad way to get stuff that is off the device. To get data from a remote server look into using an IntentService. See: https://www.youtube.com/watch?v=xHXn3Kg2IQE
AsyncTask is designed to be a helper class around Thread and Handler and does not constitute a generic threading framework. AsyncTasks should ideally be used for short operations (a few seconds at the most.) If you need to keep threads running for long periods of time, it is highly recommended you use the various APIs provided by the java.util.concurrent pacakge such as Executor, ThreadPoolExecutor and FutureTask. See the http://developer.android.com/reference/android/os/AsyncTask.html for more info.
An alternative to asynctask is robospice.https://github.com/octo-online/robospice.
You can get started with robopice here. https://github.com/octo-online/robospice/wiki/Starter-Guide.
A sample of robospice at https://play.google.com/store/apps/details?id=com.octo.android.robospice.motivations&feature=search_result.
Some of the features of robospice.
1.executes asynchronously (in a background AndroidService) network requests (ex: REST requests using Spring Android).
2.is strongly typed ! You make your requests using POJOs and you get POJOs as request results.
3.enforce no constraints neither on POJOs used for requests nor on Activity classes you use in your projects.
4.caches results (in Json with both Jackson and Gson, or Xml, or flat text files, or binary files, even using ORM Lite).
5.notifies your activities (or any other context) of the result of the network request if and only if they are still alive
6.no memory leak at all, like Android Loaders, unlike Android AsyncTasks notifies your activities on their UI Thread.
7.uses a simple but robust exception handling model.

Categories

Resources