I have two activities- act1 and act2. I want to transfer a String from act1 to act2 when the user presses a button and after some computation I want to transfer a LatLng from act2 to act1, while keeping both activities open (or at least be able to restore every change in act2 from the app start).
Things I tried:
I saw here that if I add some flags to the intent I won't start new activities when using startActivity(). It works well getting from act1 to act2 but after starting act1 from act2 it stops act2, so in the next act2 opening it will make a new act2 copy.
I looked at the not-deprecated version of startActivityForResult, but since I need both of the activities open it's not what I want. I also want both of them to receive and return data.
From here, using static data structure in one activity may not be good practice.
I tried using extras and onNewIntent but couldn't make it work (since I can't keep both activities running).
Background (if relevant):
I have an app with two activities- main, which stores a ListView, and a map activity.
The map must have a marker placed in each saved address.
The list has two button types:
"Add a new place...", that open the map activity, and adds a new marker where the user wants.
-some address-, that open the map in the location corresponding to this address.
I need a way to pass the desired address to the map so it'll show this location, and I also need to pass the new saved address back to the main activity after creating a location.
You can use the repository pattern to store the data in a way accessible by all code in your app.
What is a repository?
A repository is a simple class that holds some data and provides access to it. Something like:
class Repository {
private String theString = "";
public void setTheString(String newValue) {
theString = newValue;
}
public String getTheString( {
return theString;
}
}
It's a good idea to give a more descriptive name to the repository. So if this is a repository that stores location data, you could name it LocationRepository.
Where should it be created?
A good place to keep the reference to it is the Application class. If you don't have one, you can define it like this:
class MyApplication extends Application {
private Repository repository = new Repository();
public Repository getRepository() {
return repository;
}
}
It needs to extend the Application class provided by the android framework
You can also override the onCreate() method for more complex initialization, if necessary in your case
Define the application class in the manifest
In order for the android framework to know about your custom Application class you need to define it in the AndroidManifest.xml:
<application
android:name=".MyApplication"
...
Access the repository in your activities
Now in each activity you can cast the application context into your application class:
class MainActivity extends AppCompatActivity {
#Override
protected void onCreate(#Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Repository repository = ((MyApplication) getApplicationContext()).getRepository();
System.out.println(repository.getTheString());
}
}
If you want a cleaner approach, where you care about architecture design:
Create a ViewModel per each activity
Create a Singleton, which the ViewModels access, and use it to share the data.
The Singleton could be something like:
object AddressManager{
fun saveAddress(address: Address) {
}
fun getAddress(): Address{
}
}
And of course, I would advise you to use Dagger and Hilt for the injection and not to use "object", but this is again more and more design ideas.
I started to learn the android framework and my biggest problem is the hell around the activity life cycle. So when the user rotate the screen my application just crash. As I understand beside the normal activity life cycle Android hacked a force-instance-deleter-and-partially-recovery service for me which is not a bug but a feature.
So I just want my member variable keeps safe, so a I thought a start storing it in the Application class.
So I want to refactor my program in the following way:
I create an own Application
public class MainApp extends Application {
LoginActivityData loginActivityData; // create data "segment" for every activity
FirstActivityData firstActivityData;
...
public static MainApp getInstance(final Context context) {
if (context == null) return null;
final Context app = context.getApplicationContext();
return app instanceof MainApp ? (MainApp) app : null;
}
}
In activities and fragments I stop using member variables except the one from the MainApp class.
public class LoginActivity extends Activity {
LoginActivityData loginActivityData;
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
loginActivityData = MainApp.getInstance(this).loginActivityData;
}
Is there any drawback of this design?
Yes, there is a drawback. Your application object can and will be destroyed by the system when it needs to recover memory, and the application object does not have callback methods that can be used to save state. See here for a fuller explanation.
There are many ways to persist data/state, but if you use the following approach you generally won't go far wrong:
Use onPause() to save long-term data to a SQLite DB/SharedPreferences/cloud etc. Restore it wherever appropriate (onCreate(), onResume(), ...).
Use onSaveInstanceState() to save temporary data to a Bundle. Restore it in onCreate()/onRestoreInstanceState(). The bundle is automatically passed around to the appropriate methods by the system. Note that there is no guarantee that onSaveInstanceState() will be called, so don't use it for critical data.
An extended Application class can declare global variables. Are there other reasons?
Introduction:
If we consider an apk file in our mobile, it is comprised of
multiple useful blocks such as, Activitys, Services and
others.
These components do not communicate with each other regularly and
not forget they have their own life cycle. which indicate that
they may be active at one time and inactive the other moment.
Requirements:
Sometimes we may require a scenario where we need to access a
variable and its states across the entire Application regardless of
the Activity the user is using,
An example is that a user might need to access a variable that holds his
personnel information (e.g. name) that has to be accessed across the
Application,
We can use SQLite but creating a Cursor and closing it again and
again is not good on performance,
We could use Intents to pass the data but it's clumsy and activity
itself may not exist at a certain scenario depending on the memory-availability.
Uses of Application Class:
Access to variables across the Application,
You can use the Application to start certain things like analytics
etc. since the application class is started before Activitys or
Servicess are being run,
There is an overridden method called onConfigurationChanged() that is
triggered when the application configuration is changed (horizontal
to vertical & vice-versa),
There is also an event called onLowMemory() that is triggered when
the Android device is low on memory.
Application class is the object that has the full lifecycle of your application. It is your highest layer as an application. example possible usages:
You can add what you need when the application is started by overriding onCreate in the Application class.
store global variables that jump from Activity to Activity. Like Asynctask.
etc
Sometimes you want to store data, like global variables which need to be accessed from multiple Activities - sometimes everywhere within the application. In this case, the Application object will help you.
For example, if you want to get the basic authentication data for each http request, you can implement the methods for authentication data in the application object.
After this,you can get the username and password in any of the activities like this:
MyApplication mApplication = (MyApplication)getApplicationContext();
String username = mApplication.getUsername();
String password = mApplication.getPassword();
And finally, do remember to use the Application object as a singleton object:
public class MyApplication extends Application {
private static MyApplication singleton;
public MyApplication getInstance(){
return singleton;
}
#Override
public void onCreate() {
super.onCreate();
singleton = this;
}
}
For more information, please Click Application Class
Offhand, I can't think of a real scenario in which extending Application is either preferable to another approach or necessary to accomplish something. If you have an expensive, frequently used object you can initialize it in an IntentService when you detect that the object isn't currently present. Application itself runs on the UI thread, while IntentService runs on its own thread.
I prefer to pass data from Activity to Activity with explicit Intents, or use SharedPreferences. There are also ways to pass data from a Fragment to its parent Activity using interfaces.
The Application class is a singleton that you can access from any activity or anywhere else you have a Context object.
You also get a little bit of lifecycle.
You could use the Application's onCreate method to instantiate expensive, but frequently used objects like an analytics helper. Then you can access and use those objects everywhere.
Best use of application class.
Example: Suppose you need to restart your alarm manager on boot completed.
public class BaseJuiceApplication extends Application implements BootListener {
public static BaseJuiceApplication instance = null;
public static Context getInstance() {
if (null == instance) {
instance = new BaseJuiceApplication();
}
return instance;
}
#Override
public void onCreate() {
super.onCreate();
}
#Override
public void onBootCompleted(Context context, Intent intent) {
new PushService().scheduleService(getInstance());
//startToNotify(context);
}
Not an answer but an observation: keep in mind that the data in the extended application object should not be tied to an instance of an activity, as it is possible that you have two instances of the same activity running at the same time (one in the foreground and one not being visible).
For example, you start your activity normally through the launcher, then "minimize" it. You then start another app (ie Tasker) which starts another instance of your activitiy, for example in order to create a shortcut, because your app supports android.intent.action.CREATE_SHORTCUT. If the shortcut is then created and this shortcut-creating invocation of the activity modified the data the application object, then the activity running in the background will start to use this modified application object once it is brought back to the foreground.
I see that this question is missing an answer. I extend Application because I use Bill Pugh Singleton implementation (see reference) and some of my singletons need context. The Application class looks like this:
public class MyApplication extends Application {
private static final String TAG = MyApplication.class.getSimpleName();
private static MyApplication sInstance;
#Contract(pure = true)
#Nullable
public static Context getAppContext() {
return sInstance;
}
#Override
public void onCreate() {
super.onCreate();
Log.d(TAG, "onCreate() called");
sInstance = this;
}
}
And the singletons look like this:
public class DataManager {
private static final String TAG = DataManager.class.getSimpleName();
#Contract(pure = true)
public static DataManager getInstance() {
return InstanceHolder.INSTANCE;
}
private DataManager() {
doStuffRequiringContext(MyApplication.getAppContext());
}
private static final class InstanceHolder {
#SuppressLint("StaticFieldLeak")
private static final DataManager INSTANCE = new DataManager();
}
}
This way I don't need to have a context every time I'm using a singleton and get lazy synchronized initialization with minimal amount of code.
Tip: updating Android Studio singleton template saves a lot of time.
I think you can use the Application class for many things, but they are all tied to your need to do some stuff BEFORE any of your Activities or Services are started.
For instance, in my application I use custom fonts. Instead of calling
Typeface.createFromAsset()
from every Activity to get references for my fonts from the Assets folder (this is bad because it will result in memory leak as you are keeping a reference to assets every time you call that method), I do this from the onCreate() method in my Application class:
private App appInstance;
Typeface quickSandRegular;
...
public void onCreate() {
super.onCreate();
appInstance = this;
quicksandRegular = Typeface.createFromAsset(getApplicationContext().getAssets(),
"fonts/Quicksand-Regular.otf");
...
}
Now, I also have a method defined like this:
public static App getAppInstance() {
return appInstance;
}
and this:
public Typeface getQuickSandRegular() {
return quicksandRegular;
}
So, from anywhere in my application, all I have to do is:
App.getAppInstance().getQuickSandRegular()
Another use for the Application class for me is to check if the device is connected to the Internet BEFORE activities and services that require a connection actually start and take necessary action.
Source: https://github.com/codepath/android_guides/wiki/Understanding-the-Android-Application-Class
In many apps, there's no need to work with an application class directly. However, there are a few acceptable uses of a custom application class:
Specialized tasks that need to run before the creation of your first activity
Global initialization that needs to be shared across all components (crash reporting, persistence)
Static methods for easy access to static immutable data such as a shared network client object
You should never store mutable instance data inside the Application object because if you assume that your data will stay there, your application will inevitably crash at some point with a NullPointerException. The application object is not guaranteed to stay in memory forever, it will get killed. Contrary to popular belief, the app won’t be restarted from scratch. Android will create a new Application object and start the activity where the user was before to give the illusion that the application was never killed in the first place.
To add onto the other answers that state that you might wish store variables in the application scope, for any long-running threads or other objects that need binding to your application where you are NOT using an activity (application is not an activity).. such as not being able to request a binded service.. then binding to the application instance is preferred. The only obvious warning with this approach is that the objects live for as long as the application is alive, so more implicit control over memory is required else you'll encounter memory-related problems like leaks.
Something else you may find useful is that in the order of operations, the application starts first before any activities. In this timeframe, you can prepare any necessary housekeeping that would occur before your first activity if you so desired.
2018-10-19 11:31:55.246 8643-8643/: application created
2018-10-19 11:31:55.630 8643-8643/: activity created
You can access variables to any class without creating objects, if its extended by Application. They can be called globally and their state is maintained till application is not killed.
The use of extending application just make your application sure for any kind of operation that you want throughout your application running period. Now it may be any kind of variables and suppose if you want to fetch some data from server then you can put your asynctask in application so it will fetch each time and continuously, so that you will get a updated data automatically.. Use this link for more knowledge....
http://www.intridea.com/blog/2011/5/24/how-to-use-application-object-of-android
A few days ago I've discovered that singleton can become anti-pattern in Android. My singleton (class with private constructor and instance stored in static field) was deleted (instance was deleted despite the fact other activities were still using this singleton (via getInstance() method) so another instance had to be created ) because Activity from which it was first invoked was deleted (after invoking finish for only this one activity).
I've read already how this problem can be resolved however I've also just read "Effective Java". There is said that "Single-element enum type is the bast way to implement a singleton".
So now I'm wondering what would be the lifecycle of singleton created this way in Android application? Would it be the same like in case of "standard singleton implementation" so after destroying activity from which it was invoked the first time it will be destroyed (even if it used also in other activities)?
I'm not asking about proper android singleton implemenation or the singleton pattern itself (is it pattern or anti-pattern etc) but I'd like to know what be the lifecycle of such enum singleton object and when it will be destroyed.
In all cases, the classes you use are tied to the ClassLoader that loaded them. This is true in Java in general, not just Android. Android will isolate activities by using new ClassLoaders each time -- at the least, it doesn't promise it won't, and it does as far as I can tell.
Any singleton, or other class-level state, is tied to the Class which is tied to the ClassLoader. This is why your state "disappears"; it's actually that your calling code is seeing a new Class in a new ClassLoader.
So, your enum-based trick, or anything else along these lines, would have exactly the same behavior. You just can't "persist" activity information this way. You can and should write to a SQLite DB. You could probably stash it in the SharedPreferences too.
The application object is a good location to store information which needs to be accessible to various activity or service instances. You can retrieve it like this (where this is an Activity or Service):
private MyApplication app;
in onCreate(...){
...
this.app = (MyApplication) this.getApplication();
...
}
Remember to set the name also in the manifest:
Set the attribute "name" of the "application" tag:
The value is the path to the class relative to the package of your app.
The application object is created when the app is started, you can initialize like in an activity or service in it's onCreate() method.
One thing to remember: The application object can survive closing your "last" activity. In this case you may get the same application object with the state from the previous interaction with your app. If this is a problem you must somehow detect the initial start of your app (e.g. using a special launcher activity without UI, which initializes the application object and then starts a new intent.
BTW, the same may happen with singletons if they have not yet been lost to garbage collection.
My secure singleton implementation is like that:
I create a singleton class which has an attribute of boolean 'didReceiveMemoryWarning';
public class SingleTon(){
public boolean didReceiveMemoryWarning = true;
...
...
}
In application first screen(It is exactly first launch screen)(I have a splash screen that is visible 3 sec)
SingleTon.getInstance().didReceiveMemoryWarning = false;
And in every Activity's onCreate() method, check this boolean data,
#Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
if(SingleTon.getInstance().didReceiveMemoryWarning){
{ Load your data from local to your SingleTon class,
because your app was released by OS};
}
}
it is my implementation.
I am a newbie to android. My question is not about how to do something, but more on the idea I have in mind is optimized or not.
I am creating a Chat App. The biggest issue I was facing was storing Non persistent data, coz whenever the activity closed, all data was lost. The biggest problem was when user moved from Chat Screen (Chat Activity) to Peoples List (Peoples Activity) all data was lost again, and if user reinitited chat, he couldnt see the history.
As a workaround, I am creating a few data classes, and a service. The service stores data in the classes, whenever it receives an update from activity or the server. After that on each new activity I will just pass around this object from one activity to another and service.
I would like some recommendations in this, Is this a good way to go around? Thanks for your precious time.
If I've understood properly, you need a way to store data of variables or the content of one data structure or whatever and don't lose this data when your app change across severals activities, right? You need save state across several Activities.
First solution: in Java, one solution for this problem could be to use "static" variables. You can do it but using Android, we can use a more elegant solution.
Second and recommended solution: Associate the state with the Application Context (easy)
You should create your own subclass of android.app.Application. It will work like a singleton.
One subclass of Application inherit the properties of Application and you can access to this class wherever you want using the command "Context.getApplicationContext()". Normally you will use this class to have everthing that need a global access. Example:
class YourName_App extends Application {
private ArrayList<String> chatConversation;
public String getChatConversation(){
return this.chatConversation;
}
public void setChatConversation(ArrayList<String> chat){
this.chatConversation = chat;
}
}
And now your Chat Activity:
class Chat extends Activity {
ArrayList<String> conversation;
#Override
public void onCreate(Bundle b)
{
...
YourName_App appState = ((YourName_App) getApplicationContext());
conversation = appState.getChatConversation();
...
}
}
It is done! This is the best way to do it.
Sorry for my poor english.