I currently am experiencing very slow performance by iterating through quad triangle strips and drawing each one separately, so I would like to batch all of my rectangles into one single draw call.
Looking around, it seems the best way to do this is to simply occur the overhead of duplicating vertices and using GL_TRIANGLES instead of GL_TRIANGLE_STRIP, simply drawing two separate triangles for each rectangle.
The problem is that each rectangle can have a different color, and I need to programmatically change the color of any of the rectangles. So simply using one GL_TRIANGLES call does not do the trick. Instead, it looks like I'll need to somehow index color data with my vertex data, associating a color with each rectangle. How would I go about this?
Thank you!
You can use vertex coloring.
Vertices can each have multiple channels of data, including position, color, (multiple) texture, normal, and more.
I recommend interleaving your vertices to include position and color one after the other, directly. Although you can set up a separate array of just colors and do it that way as well (just make sure you line up the colors with the positions correctly).
(Those tutorials are iPhone-oriented but the OpenGL ES code should work fine on Android)
Related
I am drawing some dots to represent players of two teams on a map.
Each team has its own colour.
Important to note that the dot contains two circles, outer border and a inner fill so there will be two colours, with the border always being the same.
It makes sense for me to generate this at runtime rather than packing a texture for each combination.
Upon research, there seems to many ways to achieve this but each has a associated problem
ShapeRenderer
ShapeRenderer is for debugging purposes and should not be used for usual drawing as stated by a LibGdx developer here
http://badlogicgames.com/forum/viewtopic.php?t=8573&p=38930
For this reason I avoided using this
Pixmap
This was very promising, I liked the idea that I could just generate two textures and re-use them for each sprite. The biggest problem with this is that Textures made via Pixmap are un-managed so if the OpenGL context is lost and regained (This can be easily reproduced in an Android application, if the user backgrounds the app and restores it from foreground). I am primarily targetting Android so this an issue for me
Texture Re-Colour
Was thinking I could create a grey scale dot and re-colour it but since my asset has two parts to it, I am not sure how I could selectively choose the inner circle and fill it.
Question 1 How Do I Restore Pixmap Texture On Context Loss?
I have not found an example which details how to do this? I assume it is going to be done in the resume lifecycle callback but what do I need to do?
Question 2 Alternative Way?
Is there an alternative way for my issue perhaps?
Thanks for reading!
Load just one texture with white circle. Use SpriteBatch to draw players: first call batch.setColor(borderColor) and draw the circle Texture with outer radius, then call batch.setColor(fillColor) and draw it with inner radius. Sure there is a some performance impact because of drawing fill part twice, but if circles are small enough the impact is going to be negligible.
Currently I'm working on an Application involving OpenGL ES 2.0. I'm using the Java Wrapper for it, since the OpenGL part will probably not have the biggest complexity ever. Nontheless, I'm currently stuck.
First, I'm trying to draw something like this:
So I just want to draw some sort of indicator, how big my "space" is - if there even are limitations? How would I draw such a cage around the center of the camera? (Of course I just want a simple one, basically a square, indicating boundaries, not something with rounded borders etc)
To draw something like this without rounded corners I suggest you to simply draw a textured cube (there are too many of those around the web). For it to look as nice as the one on the image you will also need to add some lights into the scene as they are the ones that give a true 3d effect (a sphere without shades/lights will always appear as a 2d circle).
As for the limitations: There are no specific limitations in size except the overflow. I think in most cases you have a 32-bit floating values in your vectors so its maximum value would be how big is your space. Other limitations are more of a visual, you usually use frustum for this type of scene which has parameters zNear and zFar clipping plains. These two will define you can not see pixels nearer then zNear or further then zFar. Although you can set your own value for zFar and can be very large you should know there is a penalty in depth buffer precision doing so (result can be incorrect drawing when 2 objects are too close together).
So in general you are the one that has to take care of the scene scale or size and consider your field of view.
I am working on an Android app, based on the LibGDX framework (Though I don't think that should affect this problem too much), and I am having trouble finding a way to get the results I want when drawing using transparent sprites. The problem is that the sprites visibly layer on top of each other where they overlap, similar to what is displayed in this image :
This is pretty unsightly for some of what I want to do, and even completely breaks other parts. What I would like them to do is merge together seamlessly, like so:
The only success I have had thus far is to draw the entire sequence of sprites on a separate texture at full opacity, and then draw that texture back with the desired opacity. I had this working moderately well, and I could likely make it work for most of what I need it to, but the large problem right now is that these things are dynamically drawn onto the screen, and the process of modifying a fairly large texture and sending it back are pretty taxing on mobile devices, and causes an unacceptable level of performance.
I've spent a good chunk of time looking for more ideal solutions, including experimenting with blend modes and coming up with quirky formulas that balanced out alpha and color values in ways to even things out, but nothing was particularly successful. My guess is that the only viable route for this is the previously mentioned way of creating a texture and applying the alpha difference to that, but I am unsure of the best way to make that work with lower powered mobile devices.
There might be a few other ways to do this: The most straight forward would be to attach a stencil buffer and draw circles to stencil first and then draw a full screen rect with desired color+alpha with the stencil, this should be much faster then some FBO with a separate texture.
Another thing might work is drawing those circles first with disabled blend and then your whole scene over it with inverted "blendFunc" but do note it might be impossible if other elements also need blending.
3rd instead of using stencil you could just use the alpha channel of your render buffer. Just use a color mask to draw only to alpha and draw the circles, then reenable RGB on color mask and draw the fullscreen rect using appropriate "blendFunc" also note here that if previous shapes have used blend you will need to clear the alpha to 1.0 before doing this (color mask to alpha only, disabled blend, draw full screen rect with color that has alpha set to 1.0)
I've got a an OpenGL scene rendered with a bunch of sprites, and I'd like to automagically add drop shadows to all of them. Here's a picture showing what I mean:
The scene uses orthographic projection, the sprites are textured quads, and I'm using the depth buffer to draw them front to back. I'm working with OpenGL ES 2.0, but thoughts from the iOS or non-ES worlds would be appreciated as well. I've tossed a few ideas around in my head of how I can go about this, and I'd like to find out which has the most promise.
Draw each sprite twice, the first normally, the second with some kind of drop shadow shader a bit deeper in the scene. Not sure if this is possible?
Draw a sprite, then draw it again, darkened and with some alpha, several times with some random jitter applied to the verticies. This may look silly and not at all like a shadow.
Draw the base scene without background to a texture, then blur and darken it to create one large drop shadow. Then draw the base scene over the drop shadow texture, then finally over the background. This would lose the shadows between sprites, though.
SSAO in a post-processing pass. Might be the most dynamic and automatic, but could look fuzzy/grainy and really slow things down.
At creation time, generate a shadow texture for each sprite. For rendering, draw a sprite and then its shadow texuture a bit deeper in the scene. I think I'd like to avoid this due to the loading time and extra memory requirements, but this may be the fastest and best looking?
I don't want to do any shadow work with external textures, since I use the same sprite textures at varying scales, and pre-baked shadows would scale unnaturally.
So are any of these better than the others? Are there other options I'm not thinking of? Thanks!
Those are all some well thought out options, here are my thoughts on each
It is definitely possible to use a shader but it might not be the most performant option, since the blurring will have to be done inside the shader and might involve multiple texture lookups.
Drawing the texture multiple times would work and would look like a shadow, because each "jittered" image would have slightly modified alpha values. But again, blending and multiple renders of each sprite would add up and might affect performance.
I like and recommend this option, because you can set a shader that puts black pixels instead of colored pixels (considering alpha) into a render target smaller than the screen (1/4th?) and then use this as the shadow texture. Since the texture is now being stretched, you'd get the "blurring" for free, too. The pixel shader that does the "blackening" would be very simple and not affect performance too much.
Unless you really need high-quality shadows (and the previous method doesn't suffice) I wouldn't recommend this.
This is of course the most flexible option and has an x2 rendering complexity. Unfortunately, it will consume more memory than all the other options above.
Hope this helps!
I am working on an application in which I will perform some drawing using openGL. In this application I will draw a 3d-object with each vertex a different color. This can be done by using a colorpointer.
Now, my problem is that I would like these colors to animate over time.
As the color values are given using a buffer, I would have to either recreate the buffer every frame with new colors, or replacing the values in the buffer somehow (which is probably quite error prone). I also thought about the possibility of using two buffers and switching between them (drawing with one buffer, and changing the other, then switch).
And in any case, I would have to upload the buffer to the video memory every frame...
So, my question is this; how do I, as efficient as possible, animate the different colors of an object in GL10?
Note; It would of course be easy to do this using shaders in gles 2.0, but I would prefer it if I could just use GL10 (or 11) for this project.
Instead of using vertex colors, maybe you could come up with a clever way to use a texture instead, and animate this using the texture matrix? That way you wouldn't have to update your vertex buffers ever.