My BLE application requires computation on the server side (BLE chip) which takes time and results with disconnection.
Th flow is like this:
1- Android phone writes the characteristic value to the BLE chip.
2- The chip evaluates this value and starts computation.
3- The connection is lost soon after the computation has started.
What solution can I apply to prevent the disconnecton? I have two solutions in my mind:
1- Changing the connection interval: Currently Android uses 7.5 msec as connection interval. Since the computation on BLE chip takes time, packets are not sent or received during the computation. Increasing the connection interval will decrease the number of lost packets. However there is no guarantee that Android phone will accept the new connection parameters.
2- Running the computation in a separate thread: I dont think that BLE chips' SDK support multi-threading such that while there is a computation process going on, it will keep receiving and sending packets and prevent the disconnection. I use CSR chip and I think it doesnt support.
Please correct me if I am wrong at my points.
Do you have any other suggestions to solve the issue?
Thanks in advance.
Thank you for the answers. I found out what the problem is after spending hours.
First of all, when Android gives error 133 or 129, it is most probably because of the remote device.
At the beginning I thought that the problem occurred because of the supervision timeout. Then I re-configured the connection parameters of the CSR chip but it didn't help.
There is a problem about CSR app development with xIDE (IDE of CSR). When there is run-time-error due to index overshoot or accessing some invalid pointers, then you would not receive any errors in xIDE. I finally found out the array problem and fixed it. Now it works perfect.
Thanks a lot!
I don't know exactly if what i going to explain it's feasible under Android because I used BLE only with a low level applications, anyway if your problems are the connection parameters you can try to change the Slave_Latency.
It should be usefull since playing with this parameter, you can change the number of connection intervals in which the Central device can wait until it considers the connection lost.
The following equation is usefull to derive the connection parameters:
Effective_Connection_Interval = (Connection_Interval)*(1+(Slave_Latency))
Remember that can exists some kind of Supervision_Timeout that can collide with your Effective_Connection_Interval
Related
I've been experimenting with the new Android Nearby Connections v2.0 API. Most of my devices can now talk to each other most of the time, but I also get a lot of error codes back when trying to connect. Checking status.getStatusCode() inside my program, I can see the following return codes:
STATUS_ALREADY_CONNECTED_TO_ENDPOINT (8003)
STATUS_BLUETOOTH_ERROR (8007)
STATUS_ENDPOINT_IO_ERROR (8012)
STATUS_ERROR (13)
I'm having a hard time making sense of these. The first error code seems self-explanatory, except that I see it in cases when I haven't hit the onConnectionResult callback with a "SUCCESS" return code on either side of the alleged connection. My current code is full of trace statements, and I'd see logging entries if those callbacks had been reached. So maybe the devices are connected at some lower level, but if so, the higher-level code doesn't always hear about it.
I'm guessing that STATUS_BLUETOOTH_ERROR indicates a Bluetooth error on the side that logs it, while STATUS_ENDPOINT_IO_ERROR indicates an error (probably involving Bluetooth) on the other end? Is it possible to get any more details?
The STATUS_ERROR (13) status that I see once in a while sounds like the sort of error code a programmer would use for those "WTF, we should never get here" moments, but without access to the source code, I can only guess.
Note that I see these errors between devices that talk to each other beautifully at other times, using the same code. Sometimes if the code retries enough times, it eventually gets a stable connection. Sometimes it connects and gets instantly disconnected from the other end. Sometimes I just get an endless stream of repeated error messages (STATUS_BLUETOOTH_ERROR and/or STATUS_ENDPOINT_IO_ERROR).
I'm using Nearby Connections with the connection strategy P2P_CLUSTER. These problems seem to happen most often when both sides do both advertising and discovery. However, I wrote two smaller programs that specialize in either advertising or discovery, and they sometimes get these errors too (but less often).
In the trace messages, I've also noticed lots of warning messages from Nearby Connections that look like this:
09-04 22:54:40.070 3866-3924/? W/NearbyConnections: Cannot deserialize BluetoothDeviceName: expecting min 16 raw bytes, got 6
I'm guessing that this is because Nearby Connections uses its own short tokens (like ZGbx) instead of the device Bluetooth name? I'm not at all sure about that, though. And anyway, if these are Nearby Connections' own special tokens, then why would it be issuing warning messages about it?
[Disclaimer: I work on Nearby Connections] I can try and help out.
STATUS_ALREADY_CONNECTED_TO_ENDPOINT: This occurs if you call 'requestConnection' while you have any pending (onConnectionInitiated) or established (onConnectionResult) connections to the given endpoint. Move your log statements earlier, to onConnectionInitiated, and you should see why we throw this error.
STATUS_BLUETOOTH_ERROR: Something went wrong with Bluetooth. The phone is probably in a bad state. This (hopefully) shouldn't happen too often. But if you really want a fix, stop advertising & discovery before reattempting requestConnection. Nearby Connections will toggle Bluetooth when it detects this error, but only if nothing else is going on.
STATUS_ENDPOINT_IO_ERROR: We lost connection to the other device. This can happen for a variety of reasons (they could have walked too far away, Bluetooth was flaky, the device stopped responding, etc). If you're discovering while you have connections, avoid that. Discovery can be hard on the phone and reduces bandwidth at best, causes dropped connections at worst.
STATUS_ERROR: Something went wrong that didn't fit well in the other error codes. It's a catch-all. This is most-often returned in onConnectionResult(FAILED), to notify you that something went wrong in between onConnectionInitiated and waiting for both sides to accept the connection.
We've also lowered the log severity of "Cannot deserialize BluetoothDeviceName" in an upcoming release, since it's not really a warning. It's like you said; expected behavior when we see non-Nearby Connections devices while discovering.
If you continue to see problems, let us know what devices you're using and we'll be sure to add them to our test suite.
I just want to add that it may be necessary to have a short client name string when calling the API.
E.g., Nearby.Connections.requestConnection(googleApiClient, shortNameHere,....)
I had been generating my own client name with UUID.randomUUID().toString() and that seemed to cause the STATUS_BLUETOOTH_ERROR.
All I did was change the code sample to use a UUID name and to use P2P_CLUSTER and I got that error.
This was the solution for me regarding the STATUS_BLUETOOTH_ERROR.
I'm working on a project which using bluetooth to send two bytes data to HC-05 module and receive from it. Everything is going well but there's one thing that I can't bear with, which is stated below.
I use System.currentTimeMills() to get the time interval between sending data and receiving ,and it takes no more than 1ms`` to detect whether there's data in the buffer ofinputStream. However, it takes about30~200msto readtwo bytesof data from thebluetooth` chip on my cell phone.
Dose anyone know how to reduce the time ? Or it's insolvable?
The primary bottleneck should be the protocol scheduling. I don't know how this particular module works, but in Bluetooth in general you have to wait for your timeslot to send or receive.
Suggestions:
Check if you can send more than 2 bytes at the time. The read time is stable, but you get more data transmitted each time.
Check if the API gives you scheduling options, so the wait time goes down.
For your use case I think things would be simpler with Bluetooth low energy (BLE). You will need another module, but IMO it is worth it.
I'm writing an BLE application, where need to track if peripherals device is advertising or has stop.
I followed getting peripherals without duplications this and BLE Filtering behaviour of startLeScan() and I completely agree over here.
To make it feasible I kept timer which re-scan for peripherals after certain time (3 sec). But with new device available on market(with 5.0 update), some time re-scan take bit time to find peripherals.
Any suggestion or if anyone have achieved this?
Sounds like you're interested in scanning advertisements rather than connecting to devices. This is the "observer" role in Bluetooth Low Evergy, and corresponds to the "broadcaster" role more commonly known as a Beacon. (Bluetooth Core 4.1 Vol 1 Part A Section 6.2)
Typically you enable passive scanning, looking for ADV_IND packets broadcast by beacons. These may or may not contain a UUID. Alternatively, you can active scan by transmitting SCAN_REQ to which you may receive a SCAN_RSP. Many devices use different advertising content in ADV_IND and SCAN_RSP to increase the amount of information that can be broadcast - you could, for instance, fit a UUID128 into the ADV_IND followed by the Device Name in the SCAN_RSP. (Bluetooth Core 4.1 Vol 2 Part E Section 7.8.10)
Now you need to define "go away" - are you expecting the advertisements to stop or to fade away? You will get a Receive Signal Strength Indication "RSSI" with each advertisement (Bluetooth Core 4.1 Vol 2 Part E Section 7.7.65.2) - this is how iBeacon positioning works and there's plenty of support for beacon receivers in Android.
Alternatively you wait for N seconds for an advertisement that should be transmitted every T seconds where N>2T. The downside of the timed approach is that probably not receiving a beacon isn't the same as definitely receiving a weak beacon; to be sure you need N to be large and that impacts the latency between the broadcaster being switched off or moving out of range and your app detecting it.
One more thing - watch out that Advertising stops if something connects to a Peripheral (if you really are scanning for peripherals) another good reason to monitor RSSI.
First scenario: Bonded Devices
We know that if a bond is made, then most of the commercially available devices send directed advertisements in during re-connection. In situations such as this, according to BLE 4.0 specification, you cannot scan these devices on any BLE sniffer.
Second scenario: Connectable Devices
Peripheral devices are usually in this mode when they are initially in the reset phase. The central sends a connect initiator in response to an advertisement packet. This scenario offers you a lot of flexibility since you can play around with two predominant configuration options to alter connection time. These are: slavelatency on the peripheral and conninterval on the central. Now, I don't know how much effort it's going to take get it working on the Android platform, but if you use the Bluez BLE stack and a configurable peripheral such as a TI Sensor tag, then you can play around with these values.
Third scenario: Beacon devices
Since this is what your question revolves around, according to the BLE architecture, there are no parameters to play with. In this scenario, the central is just a dumb device left at the mercy of when a peripheral chooses to send it's beaconing signal.
Reference:
http://www.amazon.com/Inside-Bluetooth-Communications-Sensing-Library/dp/1608075796/ref=pd_bxgy_14_img_z
http://www.amazon.com/Bluetooth-Low-Energy-Developers-Handbook/dp/013288836X/ref=pd_bxgy_14_img_y
Edit: I forgot, have you tried setting the advertiser to non-connectable? That way you should be able to get duplicate scan results
I am dealing with a similar issue, that is, reliably track the RSSI values of multiple advertising devices over time.
It is sad, the most reliable way i found is not nice, rather dirty and battery consuming. It seems due to the number of android devices that handle BLE differently the most reliable.
I start LE scan, as soon as i get a callback i set a flag to stop and start scan again. That way you work around that DUPLICATE_PACKET filter issue since it resets whenever you start a fresh scan.
The ScanResults i dump into a sqlite db wich i shrink and evaluate once every x seconds.
It should be easy to adapt the shrinking to your use case, i.e. removing entries that are older than X, and then query for existance of a device to find out if you received a ScanResult in the last X seconds. However dont put that X value too low, as you must take into account that you still lose alot of advertisement packets on android LE scan, compared to a BLE scan on i.e. bluez..
Edit:
I can add some information i already found for speeding up the performance on Advertisement discovery. It involves modifying and compiling the bluedroid sources and root access to the device. Easiest would be building a full android yourself, i.e. Cyanogenmod.
When a LE scan is running, the bluetooth module sends the scan sesponse via HCI to the bluedroid stack. There various checks are done until it finally gets handed to the Java onScanResult(...) which is accessed via JNI.
By comparing the log of the hci data sent from the bluetooth module (can be enabled in /etc/bluetooth/bt_stack.conf) with debug output in the bluedroid stack aswell as the Java side i noticed that alot of advertisement packets are discarded, especially in some check. i dont really understand, beside that it has something to do with the bluedroid inquiry database
From the documentation of ScanResult we see that the ScanRecord includes the advertisement data plus the scan response data. So it might be that android blocks the report until it got the scan response data/ until it is clear there is no scan response data. This i could not verify, however a possibility.
As i am only interested in rapid updates on the RSSI of those packets, i simply commented that check out. It seems that way every single packet i get from the bluetooth moduly by hci is handed through to the Java side.
In file btm_ble_gap.c in function BOOLEAN btm_ble_update_inq_result(tINQ_DB_ENT *p_i, UINT8 addr_type, UINT8 evt_type, UINT8 *p)
comment out to_report = FALSE; in the following check starting on line 2265.
/* active scan, always wait until get scan_rsp to report the result */
if ((btm_cb.ble_ctr_cb.inq_var.scan_type == BTM_BLE_SCAN_MODE_ACTI &&
(evt_type == BTM_BLE_CONNECT_EVT || evt_type == BTM_BLE_DISCOVER_EVT)))
{
BTM_TRACE_DEBUG("btm_ble_update_inq_result scan_rsp=false, to_report=false,\
scan_type_active=%d", btm_cb.ble_ctr_cb.inq_var.scan_type);
p_i->scan_rsp = FALSE;
// to_report = FALSE; // to_report is initialized as TRUE, so we basically leave it to report it anyways.
}
else
p_i->scan_rsp = TRUE;
I have 2 android phones phones, both connected to the same wifi, both with bluetooth.
I want some method that syncs somehow the phones and starts a function on the same time on both phones.
For example playing a song at the same time.
I already tried with bluetooth but its with lag, sometimes 0.5 secs. I want something in +- 0.01sec if possible.
Someone suggesting playing it in the future with 2-3 seconds, sending the time-stamp, but how do you sync the internal clocks of the devices then ?
Before calling that particular method, try to measure the latency between the two devices:
1.First device says Hi(store the current time)
2.Second device receives the Hi.
3.Second device says back Hi !!
4.First device receives the Hi.((storedTime - currentTime) / 2 )
Now you have the latency, send your request to second device to start your particular method and start it on first one after the latency.
Try to measure the latency 5 to 10 times to be more accurate.
you have a way to transfer data between the devices right ?
if so you can send a time-stamp which is in the future,
ex: if the present time stamp is 1421242326 you send 1421242329 or something and start the function at that time on both devices.
Basically use #Dula's suggestion (device 1 sends command to device 2 and gives a "start time" which lies in the future). Both devices then start the action at the same time (in the future).
To make sure that the devices are synchronized, you can use a server-based time sync (assuming that both devices have Internet access). To do this, each device contacts the same server (using NTP, or HTTP-based NTP, or contacts a known HTTP server, like www.google.com and uses the value in the "Date" header of the HTTP response). The "server-date" is compared to the system clock on the device, and the difference is the "time-offset from server-time". The time-offsets can be used to synchronize on the "server-time", which is then used as the time base for the actual action (playing the media, etc.).
If your WiFi router allows clients to talk to each other (many public hotspots disable this), you could implement a simple socket listener on one (or each) device and have the initiating device broadcast a message.
For more complicated things and network flexibility, I've had good success with connected sessions using AllJoin. There is a bit of a learning curve to do interesting things, but the simple stuff is pretty easy once you understand the architecture.
Use a server to provide a synchronous event to just the two clients who have decclared their mutual affinity (random as a parm and pair serializer Partner-1 or Partner-2 which they share prior to their respectve calls for the sync event).
Assume both clients on same subnet (packets from 2 events serialized on the server , arrive across the network at the 2 clients simultaneously client-side) This provides synchronous PLays by 2 , bound clients.
The event delivered by server is either a confirm to play queued selected track OR a broadcast( decoupled, more formal)
The only tricky thing is the server side algorythm implementing this:
Queue a pair of requests or error
Part1, part2 with same Random value constitute valid pair if both received before either times out.
On a valid pair schedule both to the same future event in their respective , committed responses.
OnSchedule do the actual IO for 2 paired requests. Respective packets will arrive back at respective clients at same time, each response having been subject to equal network latency
Ng if two diff carrier 4G or lte networks involved. (Oops)
This thing is possible via socket, you will send a event via socket then the other device receive that event. For learn socket io chat
maybe it's not the answer you are looking for but i think that due to the high precision you are wanting , you should look for a push technology, i advice you to take look at SignalR. It's real time technology which gives you abstraction of sending methods , it have a built-in methods like Clients.All.Broadcast that fit your needs.
You can try to use some MQTT framework to send message between two device, or into a set with more number of devices.
I've got a problem. I'm developing an android application that scans for wireless accesspoints/routers. I've been testing a couple of devices and I'm getting scan rates of 2, 1, 0.5, 0.1 etc. scans per second.
My goal is to reach 10 scans per second because a router can send beacons 10 times a second. And we need this for our application.
Is there away to make this possible? Perhapse hack a rom and replace the wifi drivers? I've been looking in to this but I can't find anything about this frequentie inside the driver.
The driver used is BCM4329 driver, I can't find any datasheets of the BCM4329 so it's kinda hard to figure this out.
Thanks in advance.
flitjes
I'm not familiar with driver development but I know it's one of the hardest thing in computer science so unless you have good knowledge in linux kernel development I would forget about it.
Moreover, you still need to scan the 12 Wi-fi channels to be sure that you are detecting all access points. An access point broadcasts a beacon every 100ms * 12 channels = 1.2 seconds. Spending less time than that and you risk missing access points.
You don't need to change anything in the device driver, Android makes it available to you to scan for access points. See the documentation.
Although requesting that many scans will probably not be very good for the battery life and the responsiveness of your app...
Your assumption that beacon rate is 10 per second is incorrect. This is really an AP configuration parameter, although 10 per sec is default in most. Besides that, APs do not send beacons simultaneously, if this happens, it's called a collision and a back-off algorithm is used for retransmission. In addition, even scanning 10 times per second doesn't make it certain for you to capture all beacons, like was pointed out in the previous answers.
if u use 4339 driver, you could not set the scan rate in driver or android api which is fixed in 4339 firmware, scan is about all channels && time u spend on each channel, according to the 80211 spec, which is part of mac && phy. in this case u just need to get the beacon, so u should use passive scan and use fixed channel && MaxChannelTime u want.
u have to ask broadcom for speical fw to figure out your problem,
IEEE
Std 802.11-2012 page 978
10.1.4.2 Passive scanning
If the ScanType parameter indicates a passive scan, the STA shall listen to each channel scanned for no
longer than a maximum duration defined by the MaxChannelTime parameter.