Android: State of force killed applications - android

As far as I can read, Android may kill my process at any time 1.
One might interpret the article [1] such that, at any point, a process must be able to survive a crash. How is that handled? Are there any guarantees of any methods being called if a process is killed this way? The article* doesn't mention it.
My question is, how do you guarantee that a force-killed process resumes in some sane way on next start? The only state my process has (assuming no guarantees are made for methods being called when process is killed) is the state in persistent storage (a DB or elsewhere) and this is likely to be incomplete if process is force-killed.
Concrete example: Let's say I ask a Service to perform some work. This work is not something like playing a music file. It is work that can be considered "done" at some point (e.g. sending data to the web). If my Service gets killed, say after 50% of the work is done, how would my app know if the work was successful? I could have a flag in persistent storage saying "done", but even then, Android might kill my Service after I send the last byte and before I set the flag.
Is there any common way of handling this? My Service could, when restarted, negotiate with the web server to see if the file was transferred, but it quickly gets really complicated and I don't think it would really solve the problem.
[Edit 1 start]
I am aware of the following text [1] but that does not solve the problem for services, "This last state is generated each time the user leaves that part of the application, not when it is killed"
[Edit 1 end]
[Edit 2 start]
I found something really interesting. An apparent inconsistency in the Android documentation related to this. Please see my new question at 2
[Edit 2 end]
[Edit 3 start]
The "apparent inconsistency" has been resolved. It was due to me not being precise about "app"/"process"/"activity" terms. This question still stands, though.
[Edit 3 end]

Are there any guarantees of any methods being called if a process is killed this way?
Nothing is called on your app when your process is terminated.
how do you guarantee that a force-killed process resumes in some sane way on next start?
That cannot be answered in the abstract.
The only state my process has (assuming no guarantees are made for methods being called when process is killed) is the state in persistent storage (a DB or elsewhere) and this is likely to be incomplete if process is force-killed.
You should be updating your local persistent store when the data changes. Hence, your persistent store is likely to be up to date when your process is terminated. An in-memory cache should be treated as a read cache, not a write cache.
It is work that can be considered "done" at some point (e.g. sending data to the web). If my Service gets killed, say after 50% of the work is done, how would my app know if the work was successful?
It would have to negotiate with the Web server to determine what was and was not successfully uploaded.
Is there any common way of handling this?
There are various approaches for trying to maintain "transactional integrity", particularly for long-running operations where process termination poses a greater issue. None of those are unique to Android, as this has been a problem in computers for decades. Most boil down to "check what succeeded, and re-try what didn't". How complicated this is depends entirely on the nature of the data you are trying to update and the available means for updating it.

Related

Is System.exit(0) really that dangerous?

An application background service updates sqlite database. Therefore my activities are becoming outdated. Activity intents also contain outdated params so onCreate, onResume will crash the application. An easiest solution is to restart whole application. I don't want to add IFs to all onCreate, onResume methods in all activities to handle one special case.
I noticed that ACRA has following code executed after an exception has been handled.
android.os.Process.killProcess(android.os.Process.myPid());
System.exit(10);
However many people discourage use of System.exit(0). Is System.exit(0) really that dangerous for an Android application data integrity? Of course my code will close the database before existing.
Update:
I known how to use finish(), content providers, send broadcasts, read many answers here on SO, etc. However each of these approaches requires additional thousands lines of code. I implemented solution with System.exit(0) in ten minutes. The restart is so fast that it is indistinguishable from ordinary startActivity action. The db update/restart is done after longer user inactivity so the app is already suspended by the system. My app doesn't require real time syncing. During tests the application behaves correctly. This is quick and dirty solution.
Therefore I asked the question about possible side effects of System.exit(0). Not how I can do the design differently. I know that current design is not perfect.
System.exit(0) is an artifact from Java runtime, it isn't meant for Android. So in any cases using it would be worst solution.
Why don't you use Activity.finish() gracefully?
If you terminate the process you are living in, you'll loose most of the caching and restart time (~resume in the eyes of the user) for it next time will be higher.
Read more in Activity Lifecycle documentation on Android Developers.
Killing the process will not clean up any registered resources from outside the process. BroadcastReceivers, for example. This is a leak and the device will tell you as much.
You really shouldn't be updating the database schema from a background service. Do it when your activities resume.
If you are just updating your data, resuming an activity should validate the data specified by the Intent and tell the user if, for example, Item X is no longer there.
No tool is that dangerous if used carefully and for a specific, well thought off purpose.
However, In your case I do not believe System.exit() is the right way to go. If your application depends on data from a database, create a background service (or a few, depending on what you need) that will inform your application of changes and update the data. It is, in my opinion the right way to handle changes.
As for scenarios when you want to use System.exit() I personally sometimes use it when I can't recover from a critical error and no graceful degradation is possible. In those cases it is better to force all resources associated with your application to cease rather than just leave loose ends tangling around. To clarify, you should always use error handling before doing anything radical. Proper error handling is often the way to go.
But this is a very delicate topic and you are likely to receive quite a few diverging answers.
Therefore my activities are becoming outdated.
Use a ContentProvider and ContentObserver (or the Loader framework), or use a message bus (LocalBroadcastManager, Otto, etc.) to update the activities in situ.
Activity intents also contain outdated params so onCreate, onResume will crash the application
Copy the relevant "params" to data members of the activities. Update those data members as needed (e.g., from the handlers from the message bus-raised events). Hold onto that data as part of your instance state for configuration change (e.g., onSaveInstanceState()). Use this data from onCreate(), onResume(), etc.
An easiest solution is to restart whole application
It is not easiest, if you value your users, as your users will not appreciate your app spontaneously evaporating while they are using it. Do you think that Gmail crashes their own app every time an email comes in?
Next, you will propose writing a Web app that uses some exploit to crash the browser, because you cannot figure out how to update a Web page.
I noticed that ACRA has following code executed after an exception has been handled.
A top-level exception handler is about the only sensible place to have this sort of code, and even there, the objective is for this code to never run (i.e., do not have an unhandled exception).
There's an existing answer HERE that might give you some help as to why people say it's bad to use System.Exit().

Detect when application is closed

I want to know when the app is closed, because I need to erase a Database when the user shutdown the app, just in the moment when the user close the app is the right moment to erase the SQLite Database, how can I detect this?
This is a flawed design idea, which reflects a misunderstanding of the system - when the process overall dies, it's dead, meaning your code is no longer running.
You can do some tracking and have the last onDestory()'d activity do the cleanup as a courtesy, but don't assume that it will always actually happen (the method is not always called). If having a stale copy is a problem, clean it up on the next run.
That said, you can try using the ndk to provide a handler for process termination signals, but still I wouldn't count on it working in all cases. The limited potential to gain any sound functionality from this would probably not justify the effort unless you are already familiar with the concepts involved.
And do not for a minute mistake cleaning up for a security mechanism, as the file is there while your app is running, and would remain if your app terminated in an unexpected way.
Supposing you don't finish() your main activity, clearing your database inside the onDestroy() method of that activity might be the closest of what you want to accomplish. As has been pointed in the comments, refer to http://developer.android.com/reference/android/app/Activity.html#ActivityLifecycle.

When will one need to create a separate process in a Application?

I was reading a article in Android developer blog Process and Threads which talks about creating new process for specific component of Application. But I failed to understand when will creating a new process in my application becomes a absolute need. Could you please help me understand following doubts I have in this regard.
When as a developer I should feel I need to have a separate process for a Android component/s?
Does introducing a new process has any side effect on application's overall performance?
Any other info is greatly appreciated.
Thanks,
SKU
Having a separate process can be useful if there are components of your application that do not necessarily need to both be running to be useful to the user, and the background task is critical to application "correctness" (either now or in the future). The classic example of this is an app that has a service where the service saves or uploads some data that is critical to your application (critical meaning the only way to get the data back is to have the user re-enter it!). The service might be responsible for doing something like uploading or saving data, while the activity is just the interface for the user. So developers should decouple these two components to prevent problems that may arise from my next point..
Android was designed to run in a resource (especially memory) constrained environment, so processes deemed unimportant are killed periodically to open up memory for important ones by the "low memory killer" (LMK) (if you Google this you'll get tons of information on the topic). Things like foreground processes are understandably given a higher priority since they're currently in use, but they're sometimes killed off as well for reasons like consuming too much memory. Now, imagine you need to save off some data to a database after the user does something in the app and you use a service to do so to ensure that it is done even if the user navigates away from the app. Unless you create the service in its own process the process containing both the activity and the service is likely to be killed since the process belongs to a non-foreground activity.
However it is not always necessary to place the service in its own process, oftentimes simply giving the service its own thread will suffice; it's very application specific. I would only place a service in its own process if it took longer than maybe a few seconds (long enough for the user to navigate away from my application and for the LMK to step in) to perform some task in the background and that task related to the "correctness" of my application (I.E. saving data for later). For something like caching, stick to threads, since if the process gets prematurely killed you can just recreate that data later.
Another reason to have a separate process is if you're running a global service (a service that can be used by applications other than your own) that maybe you provide an interface with via an Activity for configuration.
As for the performance question, there will definitely be a performance hit for something like this. Interprocess communication is not cheap, so you should really only use a separate process if you fit into a specific use case, like the ones mentioned above. Also, there's a certain amount of memory overhead for maintaining a process, so that's another performance hit.
1.)You need to do something on seperate process or thread when you don't want your app to behave slowly. As by introducing threads you force your app not to run on UI thread. Thus making your app responsive to other events. For Example : you can use threads when you have to fetch some data from web service so that it happens in background and doesn't effect your app.
2.)Threads should not be used..We should use AsyncTask or loaders rather in android.
1.) In android 4.0 (and possibly 3.0, not sure though) The device does not let you use the HTTP Agent in the main thread, for this slows the UI..
This is when threads come in handy.
Also with the use of functions that need alot of cpu, if these are run in the UI thread, the UI will lag and not respond until the function finishes.
2.) as stated at 1, it will actually improve the visual performance of your app ;)

Is an always-on Android service ever not an anti-pattern?

I understand why an always-on service is normally an anti-pattern in Android, but my app really seems to be begging for one:
On first load, the app has to go through potentially thousands of small entities from the database to construct the initial state. There's not much data brought into memory (most is lazy loaded later), but that first scan is unavoidable by the nature of the app. This scan can take at worst 6-7 seconds with slow hardware and a big dataset, average is probably around 3. The app is a "impulse use in short bursts" type of thing, so those repeated loads are really not desirable.
I think this begs for a background service to be perpetually alive and holding that state, thus avoiding that load time. It will always be ready to be killed, and not in the foreground, so should the system or user decide that they have it out for the service, no harm is done. But if the service is left in peace, the app will start instantly, and in my case that does a lot for the user experience.
Am I still wrong?
I think this begs for a background service to be perpetually alive and holding that state, thus avoiding that load time.
As the British say, bollocks.
On first load, the app has to go through potentially thousands of small entities from the database to construct the initial state.
Then fix that. Either simplify this work, or persist the initial state in a simpler form for later reuse (e.g., JSON).
If it is OK for you to use a cached result of this work that is held in RAM, it is OK for you to use a cached result of this work that is held in an easier-to-read-in persistent data structure.
An "always-on" service would essentially act like a daemon process and there are plenty of services on Android phones that never turn off.
In this case, though, it seems a better solution would be to simply have a splash screen and/or wait dialog that sits there until the data is loaded. It seems like a bad idea to me to take up resources when the app isn't running just so the app will load faster when the user finally opens it. If the average use of the app is much smaller than the load time, then it would probably be even better to speed up the scan in some way.
People use taskkillers to kill such kind of services. My view is, that when you make the user aware of why your service is running (say, this will load the app quicker), he will understand it and not kill it. You could also ofcourse add an option to use the service or not.

Android App Exit Button

I'm not sure whether I need to add an exit button to my app. Is there any point to doing this? And if on exiting one activity or service is not .finish() or closed properly could this cause a lot of damage?
You don't need to add en exit button. If you don't, your activity will just be kept in memory until the system reclaims it. It will not consume any cpu.
Of course, if you have any worker threads running you should stop them in onStop() or onPause(), depending on what your threads are doing.
Many applications add an exit button, for some reason. I guess the reason is that they don't trust themselves to write proper code or they don't trust the Android OS to clean up properly.
Not going through the correct finish procedures will not cause any damage to others than yourself.
Anyone who says you don't need an exit button is right but putting one in never hurts. Users like to see a way to exit to the application, it's not about bad programming, it's actually about proper programming, give the user an exit button and if they never use it great and if it's there even better.
You don't need an exit button in your app. This is how android works. The user is not given any way to actually exit the application.
When you call 'finish', the application stack is just pushed to the background. It still exists in the memory. Android itself decides when to close the application(i.e. remove its instance from the memory) and generally this is done when your application becomes the oldest application which was not used for the longest time.
No, you don't. Read up on the activity lifecycle at developer.android.com
On older versions of android you had to be careful not to accidentally leave a background service running and holding resources but that's been reworked.
Guys you're righteous, but there are some cases when Exit button may have a sense. Let's say you're keeping some application-wide global data in YourApplication class (child of Application), e.g. some sensitive data or so. When user closes final activity and it's destroyed Application won't be terminated. As read Android developer resource - developer should not rely on Application.onTerminate() method. You can easily check it - even in case when all activities closed Application still alive. Whenever Application instance alive it's relatively easy to get access to those object and collect data.
I have found 2 ways how to kill Application class instance:
null'ate all object references (which is hardly possible for large projects) then call garbage collection
call
android.os.Process.killProcess(android.os.Process.myPid());
So Exit button may have function to finish all activities, call garbage collection then call killProcess() - which will guarantee safe removing of global data stored in Application.
I agree with above post by barmaley.
Long story short, you don't need to exit your application if your concerns are related to the Android system itself. Don't worry, be happy. And that applies especially for lazy users (remember the old Symbian days).
However, if you have something in mind about your application itself, then please go ahead and do it. You can finish the activity, nullify and kill. Just be reasonable because, as always, common sense is going to be better than all the tutorials and references in the world.
Anyway, just my 2c.
From a technical perspective, no, you don't need to add a quit button for all the very good reasons listed here.
Unfortunately users aren't informed in this way and regularly drop review scores because they have to 'use a task killer' or 'force close' your app.
It is a regular request and criticism in reviews/feedback for my app. So it may be necessary to appease users.
I think an exit button can provide the user with assurance that your app is closed.
I know, that it still doesn't mean that the app is definitely closed, but if the user feels more in control with an exit button then I say it is a good idea.
When I first started coding for Android, I thought it was a good idea to manually exit my main activity. What I discovered is that closing the activity via stopSelf leads to corrupt instanceState data, which caused a lot of ANRs when the activity was opened again.
The Activity Lifecycle document is information directly from the Google framework engineers. Every word is for a reason.
Consider that garbage collection takes cpu. This may seem trivial, but in designing a framework for a mobile platform, wouldn't you try to cache as much in memory as possible in case it was needed again, as cpu time = battery, and loading from flash is expensive?
GCing an entire app is non-trivial. Especially when the activity might be used repeatedly. The design had to consider all possible use cases. Cacheing makes sense. The system is designed with this principle.
I would say that not following the Activity Lifecycle document is asking for problems.
Some apps alter the configuration of the device while running or consume lots of CPU or data. You may want to give users an option to Exit the app altogether.
There are proper usecases for an Exit button.
For example, an app i made also needs to manage WiFi networks: the device configuration is changed continuously. Terrific and all while app is in active use, in this case a user would expect the behavior to effectively stop after exiting the application.
So my application has an Exit button mainly to cleanup the WiFi configs it created. I could make a button Stop and Cleanup, but no user would understand. They just want to turn the app off, thus Exit.
App running: wifi managed by app.
App exited: diy/android wifi.
Right now, choosing Exit in my application does the cleanup followed by a finish(), but the application itself lingers in the background. Functionally ok but confusing users. I could make a toggle action named "wifi feature on/off" but that wont make things simpler.

Categories

Resources