I have been studying the RingDroid source, trying to figure out how to draw waveforms on Android device. However, I got stuck in the section about reading the WAV file at CheapWAV.java.
public void ReadFile(File inputFile)
throws java.io.FileNotFoundException,
java.io.IOException {
super.ReadFile(inputFile);
mFileSize = (int)mInputFile.length();
if (mFileSize < 128) {
throw new java.io.IOException("File too small to parse");
}
FileInputStream stream = new FileInputStream(mInputFile);
byte[] header = new byte[12];
stream.read(header, 0, 12);
mOffset += 12;
if (header[0] != 'R' ||
header[1] != 'I' ||
header[2] != 'F' ||
header[3] != 'F' ||
header[8] != 'W' ||
header[9] != 'A' ||
header[10] != 'V' ||
header[11] != 'E') {
throw new java.io.IOException("Not a WAV file");
}
mChannels = 0;
mSampleRate = 0;
while (mOffset + 8 <= mFileSize) {
byte[] chunkHeader = new byte[8];
stream.read(chunkHeader, 0, 8);
mOffset += 8;
int chunkLen =
((0xff & chunkHeader[7]) << 24) |
((0xff & chunkHeader[6]) << 16) |
((0xff & chunkHeader[5]) << 8) |
((0xff & chunkHeader[4]));
if (chunkHeader[0] == 'f' &&
chunkHeader[1] == 'm' &&
chunkHeader[2] == 't' &&
chunkHeader[3] == ' ') {
if (chunkLen < 16 || chunkLen > 1024) {
throw new java.io.IOException(
"WAV file has bad fmt chunk");
}
byte[] fmt = new byte[chunkLen];
stream.read(fmt, 0, chunkLen);
mOffset += chunkLen;
int format =
((0xff & fmt[1]) << 8) |
((0xff & fmt[0]));
mChannels =
((0xff & fmt[3]) << 8) |
((0xff & fmt[2]));
mSampleRate =
((0xff & fmt[7]) << 24) |
((0xff & fmt[6]) << 16) |
((0xff & fmt[5]) << 8) |
((0xff & fmt[4]));
if (format != 1) {
throw new java.io.IOException(
"Unsupported WAV file encoding");
}
} else if (chunkHeader[0] == 'd' &&
chunkHeader[1] == 'a' &&
chunkHeader[2] == 't' &&
chunkHeader[3] == 'a') {
if (mChannels == 0 || mSampleRate == 0) {
throw new java.io.IOException(
"Bad WAV file: data chunk before fmt chunk");
}
int frameSamples = (mSampleRate * mChannels) / 50;
mFrameBytes = frameSamples * 2;
mNumFrames = (chunkLen + (mFrameBytes - 1)) / mFrameBytes;
mFrameOffsets = new int[mNumFrames];
mFrameLens = new int[mNumFrames];
mFrameGains = new int[mNumFrames];
byte[] oneFrame = new byte[mFrameBytes];
int i = 0;
int frameIndex = 0;
while (i < chunkLen) {
int oneFrameBytes = mFrameBytes;
if (i + oneFrameBytes > chunkLen) {
i = chunkLen - oneFrameBytes;
}
stream.read(oneFrame, 0, oneFrameBytes);
int maxGain = 0;
for (int j = 1; j < oneFrameBytes; j += 4 * mChannels) {
int val = java.lang.Math.abs(oneFrame[j]);
if (val > maxGain) {
maxGain = val;
}
}
mFrameOffsets[frameIndex] = mOffset;
mFrameLens[frameIndex] = oneFrameBytes;
mFrameGains[frameIndex] = maxGain;
frameIndex++;
mOffset += oneFrameBytes;
i += oneFrameBytes;
if (mProgressListener != null) {
boolean keepGoing = mProgressListener.reportProgress(
i * 1.0 / chunkLen);
if (!keepGoing) {
break;
}
}
}
} else {
stream.skip(chunkLen);
mOffset += chunkLen;
}
}
}
Everything seems straight forward until I reach
int frameSamples = (mSampleRate * mChannels) / 50;
mFrameBytes = frameSamples * 2;
mNumFrames = (chunkLen + (mFrameBytes - 1)) / mFrameBytes;
Q1. Where did the 50 magic number came from? Is it just assuming the frame duration is 50?
Q2. Why is mFrameBytes = frameSample * 2? Is it assuming each sample is 2 byte? But why?
for (int j = 1; j < oneFrameBytes; j += 4 * mChannels) {
int val = java.lang.Math.abs(oneFrame[j]);
if (val > maxGain) {
maxGain = val;
}
}
Q3. Why is j incrementing by 4 * mChannels? How was 4 justified?
Q4. What does frameGains mean actually? I've went through although articles/blogs such as
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/2
http://blogs.msdn.com/b/dawate/archive/2009/06/23/intro-to-audio-programming-part-2-demystifying-the-wav-format.aspx
http://www.speakingcode.com/2011/12/31/primer-on-digital-audio-and-pulse-code-modulation-pcm/
But I don't see such term mentioned any where.
Hope someone can shed some light on this. Thank you.
Q1. Where did the 50 magic number came from? Is it just assuming the frame duration is 50?
A1. That calculates 1/50th of a second as a frame. So the app would have to process 50 frame buffers if audio data per second.
Q2. Why is mFrameBytes = frameSample * 2? Is it assuming each sample is 2 byte? But why?
A2. I'm guessing this because he is assuming 16bit samples.
Q3. Why is j incrementing by 4 * mChannels? How was 4 justified?
A3. I think the key here is to note it starts from offset 1. Which means he is only sampling the high order byte for the sample. The 4 is probably just an optimisation so he's only processing a half the buffer (remember he's assuming 2 bytes per sample)
Q4. What does frameGains mean actually?
Well it's exactly what it says. It's the gain of that frame (1/50th of a second) See http://en.m.wikipedia.org/wiki/Gain or Google for: Audio Gain.
This should also help: https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
I've a c++ websocket server, and I want to ti send an openCV image (cv::Mat) to my Android client.
I understood that I should use base64 string, but I can't find out how to do it from my openCV frames.
I don't know how to convert a cv::Mat to a bytearray.
Thank you
Hi you can use this below code which works form me
C++ Client
Here we will send BGR raw byte in to socket by accessing Mat data pointer.
Before sending make sure that Mat is continues otherwise make it continues.
int sendImage(Mat frame){
int imgSize = frame.total()*frame.elemSize();
int bytes=0;
int clientSock;
const char* server_ip=ANDROID_IP;
int server_port=2000;
struct sockaddr_in serverAddr;
socklen_t serverAddrLen = sizeof(serverAddr);
if ((clientSock = socket(PF_INET, SOCK_STREAM, 0)) < 0) {
printf("\n--> socket() failed.");
return -1;
}
serverAddr.sin_family = PF_INET;
serverAddr.sin_addr.s_addr = inet_addr(server_ip);
serverAddr.sin_port = htons(server_port);
if (connect(clientSock, (sockaddr*)&serverAddr, serverAddrLen) < 0) {
printf("\n--> connect() failed.");
return -1;
}
frame = (frame.reshape(0,1)); // to make it continuous
/* start sending images */
if ((bytes = send(clientSock, frame.data, imgSize, 0)) < 0){
printf("\n--> send() failed");
return -1;
}
/* if something went wrong, restart the connection */
if (bytes != imgSize) {
cout << "\n--> Connection closed " << endl;
close(clientSock);
return -1;
}
return 0;
}
Java Server
You should know size of image going to receive.
Receives stream from socket and convert to byte array.
Convert byte array BGR and create Bitmap.
Code for Receiving byte array from C++ Server
public static byte imageByte[];
int imageSize=921600;//expected image size 640X480X3
InputStream in = server.getInputStream();
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte buffer[] = new byte[1024];
int remainingBytes = imageSize; //
while (remainingBytes > 0) {
int bytesRead = in.read(buffer);
if (bytesRead < 0) {
throw new IOException("Unexpected end of data");
}
baos.write(buffer, 0, bytesRead);
remainingBytes -= bytesRead;
}
in.close();
imageByte = baos.toByteArray();
baos.close();
Code to Convert byte array to RGB bitmap image
int nrOfPixels = imageByte.length / 3; // Three bytes per pixel.
int pixels[] = new int[nrOfPixels];
for(int i = 0; i < nrOfPixels; i++) {
int r = imageByte[3*i];
int g = imageByte[3*i + 1];
int b = imageByte[3*i + 2];
if (r < 0)
r = r + 256; //Convert to positive
if (g < 0)
g = g + 256; //Convert to positive
if (b < 0)
b = b + 256; //Convert to positive
pixels[i] = Color.rgb(b,g,r);
}
Bitmap bitmap = Bitmap.createBitmap(pixels, 640, 480, itmap.Config.ARGB_8888);
Check this answer in question Serializing OpenCV Mat_ . If it is not a problem for you to use boost, it can solve your problem. Probably you will need some additional JNI magic on client side.
You can take into account which of the data are important for you: cols (number of columns), rows (number of columns), data (which contains the pixel information), type (data type and channel number).
You have to vectorize your matrix, because it is not neccessarrily continuous and take into account the variations of the size of a pixel in the memory.
Suppose:
cv::Mat m;
Then to allocate:
int depth; // measured in bytes
switch (m.depth())
{
// ... you might check for all of the possibilities
case CV_16U:
depth = 2;
}
char *array = new char[4 + 4 + 4 + m.cols * m.rows * m.channels() * depth]; // rows + cols + type + data
And than write the header information:
int *rows = array;
int *cols = &array[4];
int *type = &array[8];
*rows = m.rows;
*cols = m.cols;
*type = m.type;
And finally the data:
char *mPtr;
for (int i = 0; i < m.rows; i++)
{
mPtr = m.ptr<char>(i); // data type doesn't matter
for (int j = 0; j < m.cols; j++)
{
array[i * rows + j + 3 * 4] = mPtr[j];
}
}
Hopefully no bugs in the code.
I have a bunch of local images saved as jpeg files. My images are captured using CameraPreview and the PreviewFormat is as default: NV21. I want to generate a small video from a fixed number of images.
I am not going to use FFMpeg because it requires NDK and will introduce compatibility issues.
MediaCodec and MediaMuxer seems work but there are not one working solutions on the web.
There are a few references lead to my current solution.
1.EncodeAndMuxTest: http://bigflake.com/mediacodec/EncodeAndMuxTest.java.txt
This one is written by fadden. It quite suits my needs except he is using createInputSurface not queueInputBuffer.
2.Convert bitmap array to YUV (YCbCr NV21)
I do the conversion following this answer. https://stackoverflow.com/a/17116985/3047840
3.Using MediaCodec to save series of images as Video
This question looks much similar as mine but I don't bother using MediaMuxer.
My code is the following:
public class EncodeAndMux extends Activity {
private static final String TAG = "EncodeAndMuxTest";
private static final boolean VERBOSE = false;
private static final File OUTPUT_DIR = Environment
.getExternalStorageDirectory();
private static final String MIME_TYPE = "video/avc";
private static final int FRAME_RATE = 10;
// 10 seconds between I-frames
private static final int IFRAME_INTERVAL = 10;
private static final int NUM_FRAMES = 5;
private static final String DEBUG_FILE_NAME_BASE = "/sdcard/test";
// two seconds of video size of a frame, in pixels
private int mWidth = -1;
private int mHeight = -1;
// bit rate, in bits per second
private int mBitRate = -1;
private byte[] mFrame;
// largest color component delta seen (i.e. actual vs. expected)
private int mLargestColorDelta;
// encoder / muxer state
private MediaCodec mEncoder;
private MediaMuxer mMuxer;
private int mTrackIndex;
private boolean mMuxerStarted;
private Utils mUtils;
private float mPadding;
private int mColumnWidth;
private static final int TEST_Y = 120; // YUV values for colored rect
private static final int TEST_U = 160;
private static final int TEST_V = 200;
private static final int TEST_R0 = 0; // RGB equivalent of {0,0,0}
private static final int TEST_G0 = 136;
private static final int TEST_B0 = 0;
private static final int TEST_R1 = 236; // RGB equivalent of {120,160,200}
private static final int TEST_G1 = 50;
private static final int TEST_B1 = 186;
private static final boolean DEBUG_SAVE_FILE = false; // save copy of
// encoded movie
// allocate one of these up front so we don't need to do it every time
private MediaCodec.BufferInfo mBufferInfo;
private ArrayList<String> mImagePaths = new ArrayList<String>();
byte[] getNV21(int inputWidth, int inputHeight, Bitmap scaled) {
int[] argb = new int[inputWidth * inputHeight];
scaled.getPixels(argb, 0, inputWidth, 0, 0, inputWidth, inputHeight);
byte[] yuv = new byte[inputWidth * inputHeight * 3 / 2];
encodeYUV420SP(yuv, argb, inputWidth, inputHeight);
scaled.recycle();
return yuv;
}
void encodeYUV420SP(byte[] yuv420sp, int[] argb, int width, int height) {
final int frameSize = width * height;
int yIndex = 0;
int uvIndex = frameSize;
int a, R, G, B, Y, U, V;
int index = 0;
for (int j = 0; j < height; j++) {
for (int i = 0; i < width; i++) {
a = (argb[index] & 0xff000000) >> 24; // a is not used obviously
R = (argb[index] & 0xff0000) >> 16;
G = (argb[index] & 0xff00) >> 8;
B = (argb[index] & 0xff) >> 0;
// well known RGB to YUV algorithm
Y = ((66 * R + 129 * G + 25 * B + 128) >> 8) + 16;
U = ((-38 * R - 74 * G + 112 * B + 128) >> 8) + 128;
V = ((112 * R - 94 * G - 18 * B + 128) >> 8) + 128;
// NV21 has a plane of Y and interleaved planes of VU each
// sampled by a factor of 2
// meaning for every 4 Y pixels there are 1 V and 1 U. Note the
// sampling is every other
// pixel AND every other scanline.
yuv420sp[yIndex++] = (byte) ((Y < 0) ? 0
: ((Y > 255) ? 255 : Y));
if (j % 2 == 0 && index % 2 == 0) {
yuv420sp[uvIndex++] = (byte) ((V < 0) ? 0
: ((V > 255) ? 255 : V));
yuv420sp[uvIndex++] = (byte) ((U < 0) ? 0
: ((U > 255) ? 255 : U));
}
index++;
}
}
}
public static Bitmap decodeFile(String filePath, int WIDTH, int HIGHT) {
try {
File f = new File(filePath);
BitmapFactory.Options o = new BitmapFactory.Options();
o.inJustDecodeBounds = true;
o.inPurgeable = true;
o.inInputShareable = true;
BitmapFactory.decodeStream(new FileInputStream(f), null, o);
final int REQUIRED_WIDTH = WIDTH;
final int REQUIRED_HIGHT = HIGHT;
int scale = 1;
while (o.outWidth / scale / 2 >= REQUIRED_WIDTH
&& o.outHeight / scale / 2 >= REQUIRED_HIGHT)
scale *= 2;
BitmapFactory.Options o2 = new BitmapFactory.Options();
o2.inSampleSize = scale;
o2.inPurgeable = true;
o2.inInputShareable = true;
return BitmapFactory.decodeStream(new FileInputStream(f), null, o2);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
return null;
}
#Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_encode_and_mux);
mUtils = new Utils(this);
mImagePaths = mUtils.getBackFilePaths();
mPadding = TypedValue.applyDimension(TypedValue.COMPLEX_UNIT_DIP,
AppConstant.GRID_PADDING, getResources().getDisplayMetrics());
mColumnWidth = (int) ((mUtils.getScreenWidth() - ((AppConstant.NUM_OF_COLUMNS + 1) * mPadding)) / AppConstant.NUM_OF_COLUMNS);
try {
testEncodeDecodeVideoFromBufferToSurface720p();
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (Throwable e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
/**
* Returns the first codec capable of encoding the specified MIME type, or null if no
* match was found.
*/
private static MediaCodecInfo selectCodec(String mimeType) {
int numCodecs = MediaCodecList.getCodecCount();
for (int i = 0; i < numCodecs; i++) {
MediaCodecInfo codecInfo = MediaCodecList.getCodecInfoAt(i);
if (!codecInfo.isEncoder()) {
continue;
}
String[] types = codecInfo.getSupportedTypes();
for (int j = 0; j < types.length; j++) {
if (types[j].equalsIgnoreCase(mimeType)) {
return codecInfo;
}
}
}
return null;
}
/**
* Returns a color format that is supported by the codec and by this test code. If no
* match is found, this throws a test failure -- the set of formats known to the test
* should be expanded for new platforms.
*/
private static int selectColorFormat(MediaCodecInfo codecInfo, String mimeType) {
MediaCodecInfo.CodecCapabilities capabilities = codecInfo.getCapabilitiesForType(mimeType);
for (int i = 0; i < capabilities.colorFormats.length; i++) {
int colorFormat = capabilities.colorFormats[i];
if (isRecognizedFormat(colorFormat)) {
return colorFormat;
}
}
Log.e("","couldn't find a good color format for " + codecInfo.getName() + " / " + mimeType);
return 0; // not reached
}
/**
* Returns true if this is a color format that this test code understands (i.e. we know how
* to read and generate frames in this format).
*/
private static boolean isRecognizedFormat(int colorFormat) {
switch (colorFormat) {
// these are the formats we know how to handle for this test
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420Planar:
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420PackedPlanar:
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420SemiPlanar:
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420PackedSemiPlanar:
case MediaCodecInfo.CodecCapabilities.COLOR_TI_FormatYUV420PackedSemiPlanar:
return true;
default:
return false;
}
}
/**
* Returns true if the specified color format is semi-planar YUV. Throws an exception
* if the color format is not recognized (e.g. not YUV).
*/
private static boolean isSemiPlanarYUV(int colorFormat) {
switch (colorFormat) {
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420Planar:
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420PackedPlanar:
return false;
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420SemiPlanar:
case MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420PackedSemiPlanar:
case MediaCodecInfo.CodecCapabilities.COLOR_TI_FormatYUV420PackedSemiPlanar:
return true;
default:
throw new RuntimeException("unknown format " + colorFormat);
}
}
/**
* Does the actual work for encoding frames from buffers of byte[].
*/
private void doEncodeDecodeVideoFromBuffer(MediaCodec encoder, int encoderColorFormat,
MediaCodec decoder, boolean toSurface) {
final int TIMEOUT_USEC = 10000;
ByteBuffer[] encoderInputBuffers = encoder.getInputBuffers();
ByteBuffer[] encoderOutputBuffers = encoder.getOutputBuffers();
ByteBuffer[] decoderInputBuffers = null;
ByteBuffer[] decoderOutputBuffers = null;
MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
MediaFormat decoderOutputFormat = null;
int generateIndex = 0;
int checkIndex = 0;
int badFrames = 0;
boolean decoderConfigured = false;
OutputSurface outputSurface = null;
// The size of a frame of video data, in the formats we handle, is stride*sliceHeight
// for Y, and (stride/2)*(sliceHeight/2) for each of the Cb and Cr channels. Application
// of algebra and assuming that stride==width and sliceHeight==height yields:
// Just out of curiosity.
long rawSize = 0;
long encodedSize = 0;
// Save a copy to disk. Useful for debugging the test. Note this is a raw elementary
// stream, not a .mp4 file, so not all players will know what to do with it.
if (toSurface) {
outputSurface = new OutputSurface(mWidth, mHeight);
}
// Loop until the output side is done.
boolean inputDone = false;
boolean encoderDone = false;
boolean outputDone = false;
while (!outputDone) {
Log.e(TAG, "loop");
// If we're not done submitting frames, generate a new one and submit it. By
// doing this on every loop we're working to ensure that the encoder always has
// work to do.
//
// We don't really want a timeout here, but sometimes there's a delay opening
// the encoder device, so a short timeout can keep us from spinning hard.
if (!inputDone) {
int inputBufIndex = encoder.dequeueInputBuffer(TIMEOUT_USEC);
Log.e(TAG, "inputBufIndex=" + inputBufIndex);
if (inputBufIndex >= 0) {
long ptsUsec = computePresentationTime(generateIndex);
if (generateIndex == NUM_FRAMES) {
// Send an empty frame with the end-of-stream flag set. If we set EOS
// on a frame with data, that frame data will be ignored, and the
// output will be short one frame.
encoder.queueInputBuffer(inputBufIndex, 0, 0, ptsUsec,
MediaCodec.BUFFER_FLAG_END_OF_STREAM);
inputDone = true;
Log.e(TAG, "sent input EOS (with zero-length frame)");
} else {
generateFrame(generateIndex, encoderColorFormat, mFrame);
//generateFrame(generateIndex);
ByteBuffer inputBuf = encoderInputBuffers[inputBufIndex];
// the buffer should be sized to hold one full frame
inputBuf.clear();
inputBuf.put(mFrame);
encoder.queueInputBuffer(inputBufIndex, 0, mFrame.length, ptsUsec, 0);
Log.e(TAG, "submitted frame " + generateIndex + " to enc");
}
generateIndex++;
} else {
// either all in use, or we timed out during initial setup
Log.e(TAG, "input buffer not available");
}
}
// Check for output from the encoder. If there's no output yet, we either need to
// provide more input, or we need to wait for the encoder to work its magic. We
// can't actually tell which is the case, so if we can't get an output buffer right
// away we loop around and see if it wants more input.
//
// Once we get EOS from the encoder, we don't need to do this anymore.
if (!encoderDone) {
int encoderStatus = encoder.dequeueOutputBuffer(info, TIMEOUT_USEC);
if (encoderStatus == MediaCodec.INFO_TRY_AGAIN_LATER) {
// no output available yet
Log.e(TAG, "no output from encoder available");
} else if (encoderStatus == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
// not expected for an encoder
encoderOutputBuffers = encoder.getOutputBuffers();
Log.e(TAG, "encoder output buffers changed");
} else if (encoderStatus == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
// not expected for an encoder
if (mMuxerStarted) {
throw new RuntimeException("format changed twice");
}
MediaFormat newFormat = encoder.getOutputFormat();
Log.e(TAG, "encoder output format changed: " + newFormat);
// now that we have the Magic Goodies, start the muxer
mTrackIndex = mMuxer.addTrack(newFormat);
Log.e(TAG, "muxer defined muxer format: " + newFormat);
mMuxer.start();
mMuxerStarted = true;
} else if (encoderStatus < 0) {
Log.e("","unexpected result from encoder.dequeueOutputBuffer: " + encoderStatus);
} else { // encoderStatus >= 0
ByteBuffer encodedData = encoderOutputBuffers[encoderStatus];
if (encodedData == null) {
Log.e("","encoderOutputBuffer " + encoderStatus + " was null");
}
// It's usually necessary to adjust the ByteBuffer values to match BufferInfo.
encodedData.position(info.offset);
encodedData.limit(info.offset + info.size);
encodedSize += info.size;
if ((info.flags & MediaCodec.BUFFER_FLAG_CODEC_CONFIG) != 0) {
// Codec config info. Only expected on first packet. One way to
// handle this is to manually stuff the data into the MediaFormat
// and pass that to configure(). We do that here to exercise the API.
MediaFormat format =
MediaFormat.createVideoFormat(MIME_TYPE, mWidth, mHeight);
format.setByteBuffer("csd-0", encodedData);
decoder.configure(format, toSurface ? outputSurface.getSurface() : null,
null, 0);
decoder.start();
decoderInputBuffers = decoder.getInputBuffers();
decoderOutputBuffers = decoder.getOutputBuffers();
decoderConfigured = true;
Log.e(TAG, "decoder configured (" + info.size + " bytes)"+format);
} else {
// Get a decoder input buffer, blocking until it's available.
int inputBufIndex = decoder.dequeueInputBuffer(-1);
ByteBuffer inputBuf = decoderInputBuffers[inputBufIndex];
inputBuf.clear();
inputBuf.put(encodedData);
decoder.queueInputBuffer(inputBufIndex, 0, info.size,
info.presentationTimeUs, info.flags);
encoderDone = (info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0;
Log.e(TAG, "passed " + info.size + " bytes to decoder"
+ (encoderDone ? " (EOS)" : ""));
Log.e("encoderDone",encoderDone+"");
}
encoder.releaseOutputBuffer(encoderStatus, false);
}
}
// Check for output from the decoder. We want to do this on every loop to avoid
// the possibility of stalling the pipeline. We use a short timeout to avoid
// burning CPU if the decoder is hard at work but the next frame isn't quite ready.
//
// If we're decoding to a Surface, we'll get notified here as usual but the
// ByteBuffer references will be null. The data is sent to Surface instead.
if (decoderConfigured) {
int decoderStatus = decoder.dequeueOutputBuffer(info, 3*TIMEOUT_USEC);
if (decoderStatus == MediaCodec.INFO_TRY_AGAIN_LATER) {
// no output available yet
Log.e(TAG, "no output from decoder available");
} else if (decoderStatus == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
// The storage associated with the direct ByteBuffer may already be unmapped,
// so attempting to access data through the old output buffer array could
// lead to a native crash.
Log.e(TAG, "decoder output buffers changed");
decoderOutputBuffers = decoder.getOutputBuffers();
} else if (decoderStatus == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
// this happens before the first frame is returned
decoderOutputFormat = decoder.getOutputFormat();
Log.e(TAG, "decoder output format changed: " +
decoderOutputFormat);
} else if (decoderStatus < 0) {
Log.e(TAG, "unexpected result from deocder.dequeueOutputBuffer: " + decoderStatus);
} else { // decoderStatus >= 0
if (!toSurface) {
ByteBuffer outputFrame = decoderOutputBuffers[decoderStatus];
outputFrame.position(info.offset);
outputFrame.limit(info.offset + info.size);
mMuxer.writeSampleData(mTrackIndex, outputFrame,
info);
rawSize += info.size;
if (info.size == 0) {
Log.e(TAG, "got empty frame");
} else {
Log.e(TAG, "decoded, checking frame " + checkIndex);
if (!checkFrame(checkIndex++, decoderOutputFormat, outputFrame)) {
badFrames++;
}
}
if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
Log.e(TAG, "output EOS");
outputDone = true;
}
decoder.releaseOutputBuffer(decoderStatus, false /*render*/);
} else {
Log.e(TAG, "surface decoder given buffer " + decoderStatus +
" (size=" + info.size + ")");
rawSize += info.size;
if ((info.flags & MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0) {
Log.e(TAG, "output EOS");
outputDone = true;
}
boolean doRender = (info.size != 0);
// As soon as we call releaseOutputBuffer, the buffer will be forwarded
// to SurfaceTexture to convert to a texture. The API doesn't guarantee
// that the texture will be available before the call returns, so we
// need to wait for the onFrameAvailable callback to fire.
decoder.releaseOutputBuffer(decoderStatus, doRender);
if (doRender) {
Log.e(TAG, "awaiting frame " + checkIndex);
outputSurface.awaitNewImage();
outputSurface.drawImage();
if (!checkSurfaceFrame(checkIndex++)) {
badFrames++;
}
}
}
}
}
}
Log.e(TAG, "decoded " + checkIndex + " frames at "
+ mWidth + "x" + mHeight + ": raw=" + rawSize + ", enc=" + encodedSize);
if (outputSurface != null) {
outputSurface.release();
}
if (checkIndex != NUM_FRAMES) {
Log.e(TAG, "awaiting frame " + checkIndex);
}
if (badFrames != 0) {
Log.e(TAG, "Found " + badFrames + " bad frames");
}
}
private void generateFrame(int frameIndex) {
Bitmap bitmap = decodeFile(mImagePaths.get(frameIndex), mColumnWidth,
mColumnWidth);
mFrame = getNV21(bitmap.getWidth(), bitmap.getHeight(), bitmap);
}
/**
* Generates data for frame N into the supplied buffer. We have an 8-frame animation
* sequence that wraps around. It looks like this:
* <pre>
* 0 1 2 3
* 7 6 5 4
* </pre>
* We draw one of the eight rectangles and leave the rest set to the zero-fill color.
*/
private void generateFrame(int frameIndex, int colorFormat, byte[] mFrame) {
final int HALF_WIDTH = mWidth / 2;
boolean semiPlanar = isSemiPlanarYUV(colorFormat);
// Set to zero. In YUV this is a dull green.
Arrays.fill(mFrame, (byte) 0);
int startX, startY, countX, countY;
frameIndex %= 8;
//frameIndex = (frameIndex / 8) % 8; // use this instead for debug -- easier to see
if (frameIndex < 4) {
startX = frameIndex * (mWidth / 4);
startY = 0;
} else {
startX = (7 - frameIndex) * (mWidth / 4);
startY = mHeight / 2;
}
for (int y = startY + (mHeight/2) - 1; y >= startY; --y) {
for (int x = startX + (mWidth/4) - 1; x >= startX; --x) {
if (semiPlanar) {
// full-size Y, followed by UV pairs at half resolution
// e.g. Nexus 4 OMX.qcom.video.encoder.avc COLOR_FormatYUV420SemiPlanar
// e.g. Galaxy Nexus OMX.TI.DUCATI1.VIDEO.H264E
// OMX_TI_COLOR_FormatYUV420PackedSemiPlanar
mFrame[y * mWidth + x] = (byte) TEST_Y;
if ((x & 0x01) == 0 && (y & 0x01) == 0) {
mFrame[mWidth*mHeight + y * HALF_WIDTH + x] = (byte) TEST_U;
mFrame[mWidth*mHeight + y * HALF_WIDTH + x + 1] = (byte) TEST_V;
}
} else {
// full-size Y, followed by quarter-size U and quarter-size V
// e.g. Nexus 10 OMX.Exynos.AVC.Encoder COLOR_FormatYUV420Planar
// e.g. Nexus 7 OMX.Nvidia.h264.encoder COLOR_FormatYUV420Planar
mFrame[y * mWidth + x] = (byte) TEST_Y;
if ((x & 0x01) == 0 && (y & 0x01) == 0) {
mFrame[mWidth*mHeight + (y/2) * HALF_WIDTH + (x/2)] = (byte) TEST_U;
mFrame[mWidth*mHeight + HALF_WIDTH * (mHeight / 2) +
(y/2) * HALF_WIDTH + (x/2)] = (byte) TEST_V;
}
}
}
}
}
/**
* Sets the desired frame size and bit rate.
*/
private void setParameters(int width, int height, int bitRate) {
if ((width % 16) != 0 || (height % 16) != 0) {
Log.w(TAG, "WARNING: width or height not multiple of 16");
}
mWidth = width;
mHeight = height;
mBitRate = bitRate;
mFrame = new byte[mWidth * mHeight * 3 / 2];
}
public void testEncodeDecodeVideoFromBufferToSurface720p() throws Throwable {
setParameters(1280, 720, 6000000);
encodeDecodeVideoFromBuffer(false);
}
}
Logcat:
12-17 18:25:47.405: E/EncodeAndMuxTest(16415): found codec: OMX.qcom.video.encoder.avc
12-17 18:25:47.405: I/OMXClient(16415): Using client-side OMX mux.
12-17 18:25:47.455: E/EncodeAndMuxTest(16415): found colorFormat: 21
12-17 18:25:47.455: E/EncodeAndMuxTest(16415): format: {frame-rate=10, bitrate=6000000, height=720, mime=video/avc, color-format=21, i-frame-interval=10, width=1280}
12-17 18:25:47.465: I/OMXClient(16415): Using client-side OMX mux.
12-17 18:25:47.495: E/ACodec(16415): [OMX.qcom.video.encoder.avc] storeMetaDataInBuffers (output) failed w/ err -2147483648
12-17 18:25:47.495: I/ACodec(16415): setupVideoEncoder succeeded
12-17 18:25:47.535: I/OMXClient(16415): Using client-side OMX mux.
12-17 18:25:47.545: E/EncodeAndMuxTest(16415): loop
12-17 18:25:47.545: E/EncodeAndMuxTest(16415): inputBufIndex=0
12-17 18:25:47.655: E/EncodeAndMuxTest(16415): submitted frame 0 to enc
12-17 18:25:47.655: E/EncodeAndMuxTest(16415): encoder output format changed: {csd-1=java.nio.ByteArrayBuffer[position=0,limit=8,capacity=8], height=720, mime=video/avc, csd-0=java.nio.ByteArrayBuffer[position=0,limit=18,capacity=18], what=1869968451, width=1280}
12-17 18:25:47.655: E/EncodeAndMuxTest(16415): muxer defined muxer format: {csd-1=java.nio.ByteArrayBuffer[position=0,limit=8,capacity=8], height=720, mime=video/avc, csd-0=java.nio.ByteArrayBuffer[position=0,limit=18,capacity=18], what=1869968451, width=1280}
12-17 18:25:47.655: I/MPEG4Writer(16415): limits: 2147483647/0 bytes/us, bit rate: -1 bps and the estimated moov size 3072 bytes
12-17 18:25:47.655: E/EncodeAndMuxTest(16415): inputBufIndex=2
12-17 18:25:47.795: E/EncodeAndMuxTest(16415): submitted frame 1 to enc
12-17 18:25:47.825: E/EncodeAndMuxTest(16415): decoder configured (26 bytes){csd-0=java.nio.DirectByteBuffer[position=0,limit=26,capacity=692224], height=720, width=1280, mime=video/avc}
12-17 18:25:47.855: E/EncodeAndMuxTest(16415): no output from decoder available
12-17 18:25:47.855: E/EncodeAndMuxTest(16415): inputBufIndex=0
12-17 18:25:47.976: E/EncodeAndMuxTest(16415): submitted frame 2 to enc
12-17 18:25:48.136: E/EncodeAndMuxTest(16415): passed 3188 bytes to decoder
12-17 18:25:48.176: E/EncodeAndMuxTest(16415): no output from decoder available
12-17 18:25:48.176: E/EncodeAndMuxTest(16415): inputBufIndex=1
12-17 18:25:48.296: E/EncodeAndMuxTest(16415): submitted frame 3 to enc
12-17 18:25:48.296: E/EncodeAndMuxTest(16415): passed 1249 bytes to decoder
12-17 18:25:48.326: E/EncodeAndMuxTest(16415): no output from decoder available
12-17 18:25:48.326: E/EncodeAndMuxTest(16415): loop
12-17 18:25:48.326: E/EncodeAndMuxTest(16415): inputBufIndex=2
12-17 18:25:48.396: E/EncodeAndMuxTest(16415): submitted frame 4 to enc
12-17 18:25:48.396: E/EncodeAndMuxTest(16415): passed 3085 bytes to decoder
12-17 18:25:48.436: E/EncodeAndMuxTest(16415): no output from decoder available
12-17 18:25:48.436: E/EncodeAndMuxTest(16415): inputBufIndex=0
12-17 18:25:48.436: E/EncodeAndMuxTest(16415): sent input EOS (with zero-length frame)
12-17 18:25:48.436: E/EncodeAndMuxTest(16415): passed 3056 bytes to decoder
12-17 18:25:48.466: E/EncodeAndMuxTest(16415): no output from decoder available
12-17 18:25:48.466: E/EncodeAndMuxTest(16415): passed 1085 bytes to decoder (EOS)
12-17 18:25:48.476: E/EncodeAndMuxTest(16415): decoder output buffers changed
12-17 18:25:48.496: E/EncodeAndMuxTest(16415): decoder output format changed:
Reading the Jpegs, decompressing them, and then recompressing them is going to cause loss of Image quality (and take CPU effort / time) simply appending them altogether and tossing them in a Video Container will be faster and produce a better Video.
The MJpeg Video Format is quite old so (almost) any Program can play Mjpeg Videos.
I suggest a Solution similar to this http://sourceforge.net/projects/jpegtoavi/ IE: make an Mjpeg Movie from your Jpegs. There is more than that one Program to choose from, use a Search Engine (or our Search Bar) to find more Source Code.
.
I tested my Phone to see if it can understand Mjpegs by creating a File using this command:
ffmpeg.exe -i test_in.mp4 -vcodec mjpeg -acodec copy test_out.mp4
In: Stream #0:0(und): Video: h264 (Main) (avc1 / 0x31637661), yuv420p, 1280x720 [SAR 1:1 DAR 16:9], 1568 kb/s, 29.97 fps, 29.97 tbr, 90k tbn, 59.94 tbc (default)
Out: Stream #0:0(und): Video: mjpeg (l[0][0][0] / 0x006C), yuvj420p, 1280x720 [SAR 1:1 DAR 16:9], q=2-31, 200 kb/s, 30k tbn, 29.97 tbc (default)
Unfortunatley the Android "Gallery Player" is one of the Programs that does not understand that format, but BSPlayer, VLC, and MPlayer for Android can play that Format if you want the resulting Video to play on your Phone (without writing more Code).
I want to make animated video from list of images by applying transition animation between two images. I found many similar questions on SO like,
Android Screen capturing or make video from images
Android- How to make video using set of images from sd card?
All similar SO questions suggest to used animation for that, but how can we store that animated images to video file? Is there any Android library support this facility to make video of images?
Android do not support for AWT's BufferedBitmap nor AWTUtil, that is for Java SE. Currently the solution with SequenceEncoder has been integrated into jcodec's Android version. You can use it from package org.jcodec.api.SequenceEncoder.
Here is the solution for generating MP4 file from series of Bitmaps using jcodec:
try {
File file = this.GetSDPathToFile("", "output.mp4");
SequenceEncoder encoder = new SequenceEncoder(file);
// only 5 frames in total
for (int i = 1; i <= 5; i++) {
// getting bitmap from drawable path
int bitmapResId = this.getResources().getIdentifier("image" + i, "drawable", this.getPackageName());
Bitmap bitmap = this.getBitmapFromResources(this.getResources(), bitmapResId);
encoder.encodeNativeFrame(this.fromBitmap(bitmap));
}
encoder.finish();
} catch (IOException e) {
e.printStackTrace();
}
// get full SD path
File GetSDPathToFile(String filePatho, String fileName) {
File extBaseDir = Environment.getExternalStorageDirectory();
if (filePatho == null || filePatho.length() == 0 || filePatho.charAt(0) != '/')
filePatho = "/" + filePatho;
makeDirectory(filePatho);
File file = new File(extBaseDir.getAbsoluteFile() + filePatho);
return new File(file.getAbsolutePath() + "/" + fileName);// file;
}
// convert from Bitmap to Picture (jcodec native structure)
public Picture fromBitmap(Bitmap src) {
Picture dst = Picture.create((int)src.getWidth(), (int)src.getHeight(), ColorSpace.RGB);
fromBitmap(src, dst);
return dst;
}
public void fromBitmap(Bitmap src, Picture dst) {
int[] dstData = dst.getPlaneData(0);
int[] packed = new int[src.getWidth() * src.getHeight()];
src.getPixels(packed, 0, src.getWidth(), 0, 0, src.getWidth(), src.getHeight());
for (int i = 0, srcOff = 0, dstOff = 0; i < src.getHeight(); i++) {
for (int j = 0; j < src.getWidth(); j++, srcOff++, dstOff += 3) {
int rgb = packed[srcOff];
dstData[dstOff] = (rgb >> 16) & 0xff;
dstData[dstOff + 1] = (rgb >> 8) & 0xff;
dstData[dstOff + 2] = rgb & 0xff;
}
}
}
In case you need to change the fps, you may customize the SequenceEncoder.
You can use a pure java solution called JCodec ( http://jcodec.org ). Here's a CORRECTED simple class that does it using JCodec low-level API:
public class SequenceEncoder {
private SeekableByteChannel ch;
private Picture toEncode;
private RgbToYuv420 transform;
private H264Encoder encoder;
private ArrayList<ByteBuffer> spsList;
private ArrayList<ByteBuffer> ppsList;
private CompressedTrack outTrack;
private ByteBuffer _out;
private int frameNo;
private MP4Muxer muxer;
public SequenceEncoder(File out) throws IOException {
this.ch = NIOUtils.writableFileChannel(out);
// Transform to convert between RGB and YUV
transform = new RgbToYuv420(0, 0);
// Muxer that will store the encoded frames
muxer = new MP4Muxer(ch, Brand.MP4);
// Add video track to muxer
outTrack = muxer.addTrackForCompressed(TrackType.VIDEO, 25);
// Allocate a buffer big enough to hold output frames
_out = ByteBuffer.allocate(1920 * 1080 * 6);
// Create an instance of encoder
encoder = new H264Encoder();
// Encoder extra data ( SPS, PPS ) to be stored in a special place of
// MP4
spsList = new ArrayList<ByteBuffer>();
ppsList = new ArrayList<ByteBuffer>();
}
public void encodeImage(BufferedImage bi) throws IOException {
if (toEncode == null) {
toEncode = Picture.create(bi.getWidth(), bi.getHeight(), ColorSpace.YUV420);
}
// Perform conversion
for (int i = 0; i < 3; i++)
Arrays.fill(toEncode.getData()[i], 0);
transform.transform(AWTUtil.fromBufferedImage(bi), toEncode);
// Encode image into H.264 frame, the result is stored in '_out' buffer
_out.clear();
ByteBuffer result = encoder.encodeFrame(_out, toEncode);
// Based on the frame above form correct MP4 packet
spsList.clear();
ppsList.clear();
H264Utils.encodeMOVPacket(result, spsList, ppsList);
// Add packet to video track
outTrack.addFrame(new MP4Packet(result, frameNo, 25, 1, frameNo, true, null, frameNo, 0));
frameNo++;
}
public void finish() throws IOException {
// Push saved SPS/PPS to a special storage in MP4
outTrack.addSampleEntry(H264Utils.createMOVSampleEntry(spsList, ppsList));
// Write MP4 header and finalize recording
muxer.writeHeader();
NIOUtils.closeQuietly(ch);
}
public static void main(String[] args) throws IOException {
SequenceEncoder encoder = new SequenceEncoder(new File("video.mp4"));
for (int i = 1; i < 100; i++) {
BufferedImage bi = ImageIO.read(new File(String.format("folder/img%08d.png", i)));
encoder.encodeImage(bi);
}
encoder.finish();
}
}