Generate Double Tap Event Android - android

How do i generate a double tap event on Android.
This is the implementation that i have done.
$event="/dev/event/event1"
$x=$1
$y=$2
sendevent $event 3 57 2421
sendevent $event 3 58 232
sendevent $event 3 53 $x
sendevent $event 3 54 $y
sendevent $event 0 0 0
sendevent $event 3 57 4294967295
sendevent $event 0 0 0
sendevent $event 3 57 2421
sendevent $event 3 58 232
sendevent $event 3 53 $x
sendevent $event 3 54 $y
sendevent $event 0 0 0
sendevent $event 3 57 4294967295
sendevent $event 0 0 0
With this implementation the double tap is slow that it appears as two separate single taps to the android system.
P.S: I tried these on Samsung Galaxy Nexus phone.

Why do you need to implement your custom double tab event? Maybe you can use SimpleOnGestureListener, this listener has method onDoubleTap(MotionEvent e)

Related

How to make border of LinearLayout in android as per following design

I have uses shape drawable to get rounded coreners but adding a semicircle in between seems tricky.
you can use vector asset studio to draw a custom shape and use it as background for your layout
https://developer.android.com/studio/write/vector-asset-studio.html
You can use Vector Drawable to achieve your end result. I used potrace to convert your image into svg format which is included at the bottom.
Use the Android Studio to create a vector drawable from this svg file.
<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"
"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">
<svg version="1.0" xmlns="http://www.w3.org/2000/svg"
width="271.000000pt" height="263.000000pt" viewBox="0 0 271.000000 263.000000"
preserveAspectRatio="xMidYMid meet">
<metadata>
Created by potrace 1.13, written by Peter Selinger 2001-2015
</metadata>
<g transform="translate(0.000000,263.000000) scale(0.100000,-0.100000)"
fill="#000000" stroke="none">
<path d="M225 2546 c-40 -17 -84 -63 -101 -103 -12 -27 -14 -228 -14 -1140 0
-1093 0 -1107 20 -1149 12 -24 39 -54 62 -70 l41 -29 456 -3 c251 -2 471 0
489 3 23 4 32 11 32 25 0 11 7 20 15 20 8 0 19 16 25 39 14 54 79 124 142 152
74 33 191 33 265 0 61 -27 125 -92 142 -144 7 -21 17 -37 22 -37 5 0 9 -18 9
-40 0 -40 7 -49 25 -31 6 6 151 11 345 13 l335 3 36 24 c20 14 47 41 60 60
l24 35 3 1105 c1 608 0 1121 -3 1139 -8 42 -59 100 -110 123 -36 17 -73 19
-392 19 l-353 0 0 -35 c0 -24 -5 -35 -15 -35 -8 0 -24 -20 -36 -45 -25 -53
-74 -99 -138 -128 -36 -16 -66 -21 -136 -21 -79 -1 -97 3 -147 27 -90 44 -148
127 -148 211 l0 26 -462 0 c-361 -1 -470 -4 -493 -14z m920 -93 c13 -44 28
-67 70 -109 182 -177 521 -113 592 112 l17 54 335 0 c375 0 383 -1 428 -69
l23 -34 -2 -1113 -3 -1112 -25 -27 c-51 -55 -54 -55 -399 -55 l-319 0 -7 32
c-19 86 -84 160 -180 205 -52 24 -73 28 -150 28 -82 0 -97 -3 -157 -33 -84
-41 -143 -105 -164 -179 l-15 -53 -460 0 c-497 0 -487 -1 -539 55 l-25 27 -3
1111 c-2 1096 -2 1112 18 1145 11 18 34 41 52 52 32 19 52 20 465 20 l432 0
16 -57z"/>
</g>
</svg>

reduce the memory when starting a Service(EGL mtrack too big)

First I declared the Service at manifest:
<service android:name=".TestService"
android:process=":test">
</service>
Then, I create a Service that does nothing:
public class TestService extends Service{
#Nullable
#Override
public IBinder onBind(Intent intent) {
return null;
}
}
I started a Service with
mContext.startService(new Intent(mContext, TestService.class));
in my Application,then I found the memory usage in 'Runing App' (get there by settings-> apps-> running) is 24M.And here is the meminfo I got:
adb shell dumpsys meminfo com.mypush:test
Applications Memory Usage (kB):
Uptime: 79955214 Realtime: 87129943
** MEMINFO in pid 2452 [com.mypush:test] **
Pss Private Private Swapped Heap Heap Heap
Total Dirty Clean Dirty Size Alloc Free
------ ------ ------ ------ ------ ------ ------
Native Heap 2508 2468 0 0 12288 4916 7371
Dalvik Heap 1354 956 0 0 22320 16969 5351
Dalvik Other 400 400 0 0
Stack 136 136 0 0
Gfx dev 628 628 0 0
Other dev 4 0 4 0
.so mmap 860 336 4 0
.apk mmap 29 0 0 0
.ttf mmap 9 0 0 0
.dex mmap 156 0 4 0
.oat mmap 191 0 0 0
.art mmap 564 268 0 0
Other mmap 36 4 0 0
EGL mtrack 13888 13888 0 0
GL mtrack 3272 3272 0 0
Unknown 152 152 0 0
TOTAL 24187 22508 12 0 34608 21885 12722
Objects
Views: 0 ViewRootImpl: 0
AppContexts: 3 Activities: 0
Assets: 3 AssetManagers: 3
Local Binders: 8 Proxy Binders: 13
Parcel memory: 3 Parcel count: 12
Death Recipients: 2 OpenSSL Sockets: 0
SQL
MEMORY_USED: 0
PAGECACHE_OVERFLOW: 0 MALLOC_SIZE: 0
I am running on Android 5.0/Nexus5, and found some apps used a Service use less memory than mine.So I want to know why?
Update
I have found that the EGL mtrack dumped is about 13M, it is not normal for a app that only has a empty Service.

how to find which app is listening on port Android

I'm trying to write a port scanner, I managed to get the open ports using sockets.
My problem is how to know which apps are listening on open ports.
Android is based on a Linux kernel, therefore you can do this using the same approach that works under Linux. See https://stackoverflow.com/a/2359643/441899 for a description of how to do that. Additionally you would need to determine from a Linux process what the app running in that process is (see Android - How to get the processName or packageName by using PID? for this). Note that your app would have to be running as root to access the files in /proc that it would need to in order to find this information.
cat /proc/net/tcp
this will give you a list about the android opening ports.e.g.
sl local_address rem_address st tx_queue rx_queue tr tm->when retrnsmt uid timeout inode
0: 0100007F:13AD 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0 0 3336108 1 0000000000000000 100 0 0 10 0
1: 0100007F:1F90 00000000:0000 0A 00000000:00000000 00:00000000 00000000 10252 0 3579923 1 0000000000000000 100 0 0 10 0
2: 6400A8C0:A90E 6800A8C0:1F90 04 00000001:00000000 00:00000000 00000005 0 0 0 1 0000000000000000 326 4 29 1 5
3: 6400A8C0:A91E 6800A8C0:1F90 04 00000001:00000000 00:00000000 00000005 0 0 0 1 0000000000000000 326 4 29 1 5
4: 6400A8C0:84F2 66DFC2DC:01BB 09 00000001:00000001 00:00000000 00000005 0 0 0 1 0000000000000000 665 4 24 1 5
so we know uid =10252 is the APP listening the port 1F90( which is 8080)
cat /data/system/packages.list | grep 10252 (the pid you found )
com.target.app 10252 0 /data/user/0/com.target.app default:targetSdkVersion=29 3002,3003 0 1
refer to : https://stackoverflow.com/a/38793457/445908

Benchmarking the performance of an android device with swap enabled (swapon)

What factors do I need to look at when benchmarking the performance of an android device with swap enabled? and what applications are recommended to use if there are any?
Enabling swap requires the phone to be rooted and it's kernel to support swap. "a-swapper" is one of the applications I use for enabling swap, basically it launches commands to enable swap. The swap file or swap partition is located at the external SD card.
Link to "a-swapper" at google code:
http://code.google.com/p/a-swapper/
Following is a report of my paging tests on a Raspberry Pi (ARM CPU, 512 MB RAM, SD drive). A test program writes and reads increasing volumes of data, checking for correct results and measuring speed in MB/second. Data sizes reported are 350, 400, 420 and 600 MB. Speed was at about one tenth max at 420 MB and three times slower at 600 MB. Links are included to obtain the benchmarks and C source code (FREE for anyone to play with and no Ads on any pages). As with my other benchmarks, this can be converted for Android.
http://www.roylongbottom.org.uk/Raspberry%20Pi%20Stress%20Tests.htm#anchor18
The report also provides vmstat monitoring of memory used, swapped, cache size, drive I/O and CPU utilisation. At least on my Android tablet, I can run vmstat via a Terminal Emulator at the same time as executing benchmarks.
For Windows and Linux, I have an image processing benchmark that increasingly enlarges images, with writing and reading to a drive, rotating and scrolling (You can find details by Googling for bmpspeed results.htm and Linux SDL Image Processing Benchmarks). If there is a suitable photo editor for Android, you can do the same with that using manual timing, and possibly monitor with vmstat.
Paging Test Results
StressInt uses normal memory writing and reading functions. Part 1 writes then reads the specified space with six passes using different data patterns. Reading is at high speed using AND and OR to produce a sumcheck. Part 2 writes the patterns (not timed) and reads them for at least a minimum time, in this case there is only one read pass for each pattern. The four paging tests specified 350, 400, 420 and 600 MB on a Raspberry Pi that has 512 MB RAM, with the main drive being an SD card. Vmstat was run at the same time.
At 350 MB, there is no swapping, but cache and buffer sizes are reduced, slowing down the first write pass. At 400 KB, swapping in and out at start then full speed when sorted. At 420 MB, chaos, continuous data transfer to and from the drive, CPU waiting for I/O.
1. Commands Example
lxterminal -e ./stressInt KB 600000
vmstat 10 > vmburn4.txt
2. Results
MBytes Per Second At MB Data Size
MB 350 400 420 600
Write/Read No.
1 139 24 15 14
2 209 181 16 8
3 206 203 24 8
4 206 204 26 8
5 202 205 18 8
6 206 205 20 8
Write/Rd secs 19.6 48.4 204.9 460.7
Read No.
1 158 159 20 9
2 158 159 14 9
3 159 159 39 8
4 160 155 9 9
5 159 160 25 9
6 160 159 10 9
Total secs 85 125 1082 3085
vmstat si so KB swaps in and out, bi bo KB I/O in and out, wa = waiting for I/O
350 MB vmstat 10 second samples
KBytes KB KB/sec Per sec %
procs ----------memory---------- ---swap-- -----io---- -system-- ----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 0 314260 12340 56724 0 0 70 3 1123 232 19 5 76 0
1 1 4 8920 48 21844 0 0 37 10 1141 298 42 16 42 0
1 0 8 12392 64 18404 0 0 2 9 1161 89 99 1 0 0
1 0 8 12144 80 18704 0 0 30 6 1167 82 99 1 0 0
1 0 8 11896 88 18868 0 0 16 2 1157 71 99 1 0 0
1 0 8 11764 96 18972 0 0 10 7 1163 71 99 1 0 0
1 0 8 11772 104 18972 0 0 0 3 1152 61 100 0 0 0
1 0 8 11772 112 18972 0 0 0 3 1153 65 100 0 0 0
1 0 8 11772 120 18972 0 0 0 4 1154 68 100 0 0 0
1 0 8 11772 128 18972 0 0 0 3 1153 64 100 0 0 0
0 0 8 362344 136 21384 0 0 239 5 1194 294 22 4 73 1
400 MB
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 8 355220 924 26480 0 0 63 3 1125 236 24 4 72 0
1 5 92368 8968 60 5464 10 9236 338 9245 1739 587 31 20 28 21
0 2 52492 9108 44 5092 4775 3802 6938 3807 3429 1169 10 22 0 68
1 2 71168 11236 44 4920 4654 8936 4929 8936 2428 1036 6 18 0 77
1 1 42216 9224 44 4788 4477 5600 5059 5602 3313 992 37 19 0 45
1 1 40948 11008 44 4932 143 0 591 3 1391 163 98 2 0 0
1 0 40924 12248 60 5032 15 0 33 6 1170 87 98 2 0 0
1 0 40912 12116 60 5228 2 0 21 0 1155 66 99 1 0 0
1 0 40912 12000 68 5228 0 0 0 3 1152 58 100 1 0 0
1 0 40912 12000 76 5260 3 0 6 3 1154 60 100 1 0 0
1 0 40892 12000 84 5260 0 0 0 3 1153 63 99 1 0 0
1 0 40704 11628 92 5260 34 0 34 3 1167 69 100 1 0 0
1 0 40700 11628 100 5260 0 0 0 3 1153 61 100 0 0 0
0 0 37956 401996 236 12804 474 0 1208 0 1626 229 89 5 3 3
0 0 36900 400392 244 13372 103 0 160 7 1125 180 6 2 91 1
420 MB Sample
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 3 59316 8820 48 4212 4238 4269 5132 4272 3592 939 20 16 0 65
0 1 68268 11732 44 3400 4281 5112 4736 5114 3337 938 6 19 0 75
1 3 60804 8820 76 4428 4715 3860 5877 3864 3518 1007 13 17 0 70
1 1 56408 9948 44 2976 4710 4164 6948 4168 4389 1186 5 19 0 75
2 2 70864 11704 44 2068 3975 6458 4908 6461 3854 1021 7 14 0 79
Following are results on 64 bit Windows systems, essentially from same C code as on Raspberry Pi but using one write/read pass. For these tests the benchmark was run with increasing data demands up to 5, 8 and 14 GB on the three systems.
64 Bit IntBurn64 64 Bit IntBurn64 64 Bit IntBurn64
CPU Athlon 64 Core 2 Duo Phenom II
MHz 2210 2400 3000
RAM MB 1024 4096 8192
Windows XP x64 64-Bit Vista 64-Bit Windows 7
Disk W/R
MB/sec 55 55 92
KB Secs MB/sec KB Secs MB/sec KB Secs MB/sec
100000 2041 100000 3393 100000 5146
800000 1 1976 2500000 2 2868 2000000 1 4900
850000 23 77 3000000 2 2878 3000000 1 4658
900000 58 32 3100000 2 2847 3500000 2 4651
920000 61 31 3200000 2 2899 4000000 2 4488
930000 91 21 3300000 3 2698 4500000 2 4489
940000 96 20 3400000 3 2610 5000000 2 4477
950000 93 21 3500000 7 1075 5500000 3 4166
960000 89 22 3600000 10 750 6000000 3 4051
970000 142 14 3700000 17 459 6500000 3 4036
980000 125 16 3800000 107 73 7000000 4 4078
990000 119 17 3900000 210 38 7500000 72 214
1000000 128 16 4000000 146 56 7600000 170 91
1100000 188 12 7700000 168 94
1200000 205 12 5000000 1024 10 7800000 230 69
1300000 266 10 7000000 652 22 7900000 239 68
1400000 358 8 7900000 770 21 8000000 227 72
8000000 N/A 9000000 697 26
2000000 683 6 10000000 1231 17
2100000 14000000 2742 10
5000000 1707 6 15000000 N/A
BMPSpeed Benchmark generates BMP files up to 512 MB. It measures speed of saving, loading, scrolling, rotating and editing/enlarging of 0.5, 1, 2, 4 etc. MB files upwards. Memory used is up to 2.5 times image size. The original had to be modifies for a Windows XP as 1.25 GB of sequential memory space could not be allocated. The first example below reflects paging at 256 MB but some memory would be cleared for a rerun. A second problem arises on later systems, with more graphics RAM, where fast BitBlt copying can be used at larger image sizes and this requires far more space than the slower StretchDIBits method.
I might produce a new 64 bit version to see if I can bust my new benchmarking toy with 32 GB RAM.
BMPSpeed Results
2.08 GHz CPU, 512 MB RAM, fast disk, slow GeForce graphics
Input Enlarge Save Load Scroll Scroll Rotate Use
Image Display Display /Repeat Overall 90 deg Fast
Mbytes Secs Secs Secs msecs MB/Sec Secs BitBlt
0.5 0.05 0.01 0.03 0.7 992.8 0.04 3
1.0 0.06 0.02 0.05 1.3 1013.2 0.06 3
2.0 0.08 0.03 0.12 2.3 1019.8 0.09 3
4.0 0.11 0.06 0.17 2.9 1032.4 0.15 3
8.0 0.15 0.14 0.43 11.4 262.7 0.25 3
16.0 0.24 0.29 0.51 11.4 262.7 0.81 3
32.0 0.45 0.61 0.88 11.4 262.5 1.10 3
64.0 0.55 1.31 1.49 41.4 72.2 2.79 0
128.0 0.97 2.50 2.83 53.9 55.5 6.21 0
256.0 73.02 88.77 14.84 109.7 27.3 86.60 0
512.0 82.93 20.70 89.05 842.4 3.5 67.98 0
2.4 GHz Core 2 Duo with 4 GB RAM and 64 Bit Vista, fast GeForce
Input Enlarge Save Load Scroll Scroll Rotate Use
Image Display Display /Repeat Overall 90 deg Fast
Mbytes Secs Secs Secs msecs MB/Sec Secs BitBlt
0.5 0.05 0.01 0.05 0.1 4748.4 0.02 3
1.0 0.05 0.02 0.08 0.3 4463.6 0.03 3
2.0 0.07 0.02 0.11 1.1 2475.2 0.04 3
4.0 0.09 0.03 0.19 2.4 1866.0 0.06 3
8.0 0.13 0.08 0.31 2.9 1765.0 0.10 3
16.0 0.20 0.24 0.48 2.7 1832.5 0.17 3
32.0 0.26 0.52 0.78 2.9 1741.2 0.28 3
64.0 0.39 1.08 1.38 2.9 1760.0 0.52 3
128.0 0.68 2.37 2.63 2.9 1740.3 1.03 3
256.0 1.35 4.62 5.38 3.1 1645.6 4.39 3
512.0 27.91 13.05 10.59 3.2 1595.6 57.11 3

Tracking an application's network statistics (netstats) using ADB

I have a feeling this is possible, I'm just not quite sure where the information is held.
I want to get the up/down statistics for specific applications, but I want to do it using ADB and not wireshark or netty.
I know I can see the vmData using
adb shell
cd proc
cd pid#
cat status
and I know I can see the netstats using:
ADB Shell dumpsys netstats details full
which gives me these results:
Dev stats:
Pending bytes: 1410076
Complete history:
ident=[[type=MOBILE, subType=COMBINED, subscriberId=310260...]] uid=-1 set=ALL tag=0x0
NetworkStatsHistory: bucketDuration=3600000
bucketStart=1349211600000 activeTime=3600000 rxBytes=19656154 rxPackets=16897 txBytes=615620 txPackets=8084 operations=0
bucketStart=1349215200000 activeTime=3600000 rxBytes=28854708 rxPackets=23363 txBytes=1037409 txPackets=12206 operations=0
bucketStart=1349218800000 activeTime=3600000 rxBytes=1839274 rxPackets=1565 txBytes=89791 txPackets=914 operations=0
bucketStart=1349222400000 activeTime=3600000 rxBytes=17421 rxPackets=88 txBytes=18376 txPackets=95 operations=0
bucketStart=1349226000000 activeTime=3600000 rxBytes=506966 rxPackets=788 txBytes=96491 txPackets=859 operations=0
Unfortunately this looks like a combined netstat that does not differentiate between applications.
So my question, is there a way to see network traffic by unique PID#'s or application names, by simply using the command prompt?
EDIT
Alright I made some good strides
With this code
adb shell cat proc/1638(thePID)/net/dev > C:\netstats.txt
I can get this information:
Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed
lo: 3564 28 0 0 0 0 0 0 3564 28 0 0 0 0 0 0
dummy0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet0: 117062940 191775 0 0 0 0 0 0 19344640 177574 0 0 0 0 0 0
rmnet1: 2925492 5450 0 0 0 0 0 0 1448544 5664 0 0 0 0 0 0
rmnet2: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet4: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet5: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet6: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
rmnet7: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sit0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
vip0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Unfortunately after double checking these numbers with programs like "Network Usage" from the android market place, I discovered that these numbers are the total up and down across the entire device.
So it still leaves me with, how/where the heck are programs like "Network Usage" and "Spare Parts" getting their information from?
Well I figured out where "spare parts" and "Net Usage" get their information from.
adb shell cat proc/uid_stat/(uid#)/tcp_rcv
adb shell cat proc/uid_stat/(uid#)/tcp_snd
The Problem I see with how they are doing it though is that this only accounts for TCP usage and does not account for and UDP usage.
The only way to figure out the total tx_bytes and rx_bytes is through this command.
adb shell cat /proc/net/xt_qtaguid/stats
or if you would like to convert it to a text file and view it easier.
adb shell cat /proc/net/xt_qtaguid/stats > C:\Netstats.txt
This gives you something that looks like this:
------ QTAGUID STATS INFO (su root cat /proc/net/xt_qtaguid/stats) ------
idx iface acct_tag_hex uid_tag_int cnt_set rx_bytes rx_packets tx_bytes tx_packets rx_tcp_bytes rx_tcp_packets rx_udp_bytes rx_udp_packets rx_other_bytes rx_other_packets tx_tcp_bytes tx_tcp_packets tx_udp_bytes tx_udp_packets tx_other_bytes tx_other_packets
2 rmnet0 0x0 0 0 18393 326 8506 166 10889 267 7504 59 0 0 4180 101 3397 54 929 11
3 rmnet0 0x0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 rmnet0 0x0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 rmnet0 0x0 1000 1 7181 14 1834 19 7023 12 158 2 0 0 1616 16 218 3 0 0
6 rmnet0 0x0 10001 0 5723 19 3162 26 5723 19 0 0 0 0 3162 26 0 0 0 0
7 rmnet0 0x0 10001 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 rmnet0 0x0 10007 0 1895740 1570 44556 898 1895740 1570 0 0 0 0 44556 898 0 0 0 0
9 rmnet0 0x0 10007 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 rmnet0 0x0 10019 0 5319 12 2546 14 5319 12 0 0 0 0 2546 14 0 0 0 0
11 rmnet0 0x0 10019 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 rmnet0 0x0 10026 0 6866 19 2846 24 6866 19 0 0 0 0 2846 24 0 0 0 0
13 rmnet0 0x0 10026 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
The fourth tab over (1000, 10001, etc) is the UID number. The easiest way to find out what application belongs to what UID number is:
adb shell dumpsys package > C:\apps.txt
Go down to the "Package:" section, and then its the first line down after the process name labeled "userid=".
Now to read the above chart, the main two numbers that you want to know are the 6th number in (the rx_bytes) and the 8th number in (the tx_bytes). Those two numbers should be an accurate portrayal of all the bytes in and out, for any particular application.
Enjoy.
Adding a snippet to Nefarii's comment, the easiest way to find out the UID for a particular application, e.g., com.example.myapp, is:
adb shell dumpsys package com.example.myapp | grep userId=

Categories

Resources