How to validate Unix Timestamp in Java? - android

I have an Android application that stores a unix timestamp of a certain event in shared preferences. Since those files can be accessed (and modified) by anyone who has a rooted phone, I'm applying a validation check in my app before processing that value. So, my question is, how can a unix timestamp be validated?
For example
String timestamp = "1415251687";
validateUnixTime(timestamp);
should return true and
timestamp = "1415-dummydata";
validateUnixTime(timestamp);
should return false
Edit: Just to be clear, I'm storing (and fetching) the value of timestamp as long from shared preferences. The code above was just for the sake of simplicity. The function should accept a long as its parameter, validate it, and return true or false based on it being a valid unix timestamp value.

This depends on when do you want the Timestamp to be considered invalid. but the following code (that i got from another answer) might help you get the main idea.
public static final String RELEASE_DATE = "2011/06/17";
private static final long MIN_TIMESTAMP;
static {
try {
MIN_TIMESTAMP = new SimpleDateFormat("yyyy-MM-dd").parse(RELEASE_DATE).getTime();
} catch (ParseException e) {
throw new AssertionError(e);
}
}
// after the software was release and not in the future.
public static final boolean validTimestamp(long ts) {
return ts >= MIN_TIMESTAMP && ts <= System.currentTimeMillis();
}

First convert the Timestamp to human readable date.
long dv = Long.valueOf(timestamp_in_string)*1000;// its need to be in milisecond
Date df = new java.util.Date(dv);
String vv = new SimpleDateFormat("yyyy-MM-dd").format(df);
if(isValidDate(vv){
Log.d("DateIsValid","true");
} else {
Log.d("DateIsValid","false");
}
then check if the date converted is valid or not
public static boolean isValidDate(String inDate) {
SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd");
dateFormat.setLenient(false);
try {
dateFormat.parse(inDate.trim());
} catch (ParseException pe) {
return false;
}
return true;
}

Related

Improve json parse performance

I'd like to parse the json data coming from this api (taken from their example page):
https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
I did build a parse method which takes ages (several seconds on my Galaxy A5) to parse the data (i know it is a lot of data to parse):
This is what i did:
private static List<PriceInfo> parsePriceDaily(JSONObject response, boolean onlyCurrentPrice) throws JSONException {
long millis = System.currentTimeMillis();
/* Check if this message is an Error Message = No data for symbol available.
* If not fetch data
* example structure
* https://www.alphavantage.co/query?function=TIME_SERIES_DAILY_ADJUSTED&symbol=MSFT&outputsize=full&apikey=demo
*/
/* Get the First Object - Either Meta Data or Error Message */
Iterator<String> it = response.keys();
String key = it.next();
/* Is Error? */
if (key.contains("Error Message")) {
throw new JSONException(response.getString(key));
}
/* Valid Object - process metadata */
String timeZone = response.getJSONObject(key).getString("5. Time Zone");
DateFormat format = new SimpleDateFormat("yyyy-MM-dd", Locale.US);
format.setTimeZone(TimeZone.getTimeZone(timeZone));
/* Process datasets */
List<PriceInfo> result = new ArrayList<>();
key = it.next();
JSONObject datasets = response.getJSONObject(key); /* Time Series (Daily) */
JSONObject dataset;
String dateString;
for (it = datasets.keys(); it.hasNext(); ) {
dateString = it.next(); /* dataset */
dataset = datasets.getJSONObject(dateString);
Date date = new Date(0); /* standard value */
try {
date = format.parse(dateString);
} catch (ParseException e) {
e.printStackTrace();
}
result.add(
new PriceInfo(
date,
dataset.getString("1. open"),
dataset.getString("2. high"),
dataset.getString("3. low"),
dataset.getString("4. close"),
dataset.getString("5. adjusted close"),
dataset.getString("6. volume"),
dataset.getString("7. dividend amount"),
dataset.getString("8. split coefficient")
)
);
if (onlyCurrentPrice) {
break;
}
}
Log.d(TAG, "Passed time: " + (System.currentTimeMillis() - millis));
return result;
}
What are the best improvements? Switching to another JSON library?
Use Gson for parsing and JsonSchemaToPojo for creating POJO classes .
Did you try gson library from Google?

matching time on real-time graph

I set time/date as a x value in my real-time graph, but the time didn't match with my android's time, can someone check my code
final DateFormat sdf = android.text.format.DateFormat.getTimeFormat(this);
graph.getGridLabelRenderer().setLabelFormatter(new DefaultLabelFormatter() {
#Override
public String formatLabel(double value, boolean isValueX) {
if (isValueX) {
long Valuemilis = (new Double(value)).longValue();
return sdf.format(Valuemilis*1000);
}
else {
return null;
}
}
});
app's picture
To get your system time in milliseconds you can use Date.java class.
The below snippet of code may solve your problem.
long Valuemilis = new Date().getTime();

ical4j DateTime parse exception

Using ical4j 1.0.6, I'm trying to instantiate a DateTime from a "DTSTART..." String. The constructor is throwing a ParserException even for the examples listed as valid in the DateTime documentation and ical4j wiki
String date = "DTSTART;TZID=US-Eastern:19970714T133000";
try {
DateTime dt = new DateTime(date);
} catch (ParseException e) {
e.printStackTrace(); //always thrown
}
java.text.ParseException: Unparseable date: "DTSTART;TZID=US-Eastern:19970714T133000" (at offset 0)
I've tried setting KEY_RELAXED_PARSING to true, to no avail.
What am I doing wrong?
Looking at the javadoc, the constructor DateTime(String) says:
Constructs a new DateTime instance from parsing the specified string representation in the default (local) timezone.
So I guess the "DSTART" and "TZID" parts of the string are too much.
To set a specific TimeZone, read the section Working with timezones.
I ended up using this code
String[] parts = property.split(":");
if (parts.length > 1) {
try {
String timezone = parts[0].replace("DTSTART;TZID=", "");
DtStart start = new DtStart();
start.getParameters().add(Value.DATE_TIME);
start.getParameters().add(new TzId(timezone));
start.setValue(parts[1]);
} catch (ParseException e) {
e.printStackTrace();
}
}

Sort list with string dates

I have a small problem. I have a ArrayList listOfSData where every element is some like a date: for example:
[30-03-2012, 28-03-2013, 31-03-2012, 2-04-2012, ...]
Now I was wondering how can I sort this list. I mean I want to sort to this
[28-03-2013, 30-03-2012, 31-03-2012, 2-04-2012, etc].
This list must have String values. How can I sort this list? Help me because I have no idea how can I do that.
You will need to implement a Comparator<String> object that translates your strings to dates before comparing them. A SimpleDateFormat object can be used to perform the conversion.
Something like:
class StringDateComparator implements Comparator<String>
{
SimpleDateFormat dateFormat = new SimpleDateFormat("dd-MM-yyyy");
public int compare(String lhs, String rhs)
{
return dateFormat.parse(lhs).compareTo(dateFormat.parse(rhs));
}
}
Collections.sort(arrayList, new StringDateComparator());
here is a small example based on your input. This could be done with a few lines less, but I thought this would be better to understand. Hope it helps.
List<String> values = new ArrayList<String>();
values.add("30-03-2012");
values.add("28-03-2013");
values.add("31-03-2012");
Collections.sort(values, new Comparator<String>() {
#Override
public int compare(String arg0, String arg1) {
SimpleDateFormat format = new SimpleDateFormat(
"dd-MM-yyyy");
int compareResult = 0;
try {
Date arg0Date = format.parse(arg0);
Date arg1Date = format.parse(arg1);
compareResult = arg0Date.compareTo(arg1Date);
} catch (ParseException e) {
e.printStackTrace();
compareResult = arg0.compareTo(arg1);
}
return compareResult;
}
});
At first already given answers are write, but that decisions they are not very fast.
Standard java Collections.sort use timsort. In average case it takes O(n*log(n)) comparations, so your custom comparator will call O(n*log(n)) times.
If performance is important for you, for example if you have large array you can do following things:
Convert string dates to int or long timestamps. This takes O(n) operation. And then you just sort array of longs or integers. Comparation of two atomic int are MUCH faster than any comparator.
If you want to get MORE speed for this sort, you can use use Radix sort (http://en.wikipedia.org/wiki/Radix_sort). I takes much memory but we can optimize it. As I see you don't need to specify time of day. So the range of values is not very big.
At firts pass (O(n)) you can convert date to integer value, with next assumptions:
1970 01 01 is start date (or more specific time if you know it) and encode like 1
lets max date is 2170 01 01
all month have 31 day. So You get 31*12 = 372 values per year
And than you can just sort array of integers using radix sort. Sorting values with 200 years range takes only 200 * 372 * 4 = 297600 bytes for merge sort array, but you get O(2 * n) complexisty.
Here is a method I wrote for ordering an array of objects by their time parameter. It's done by comparing 2 String times every time, this can be easily adjusted for your date comparison by changing the pattern parameter to: "dd-MM-yyyy"
int repositorySize = tempTasksRepository.size();
int initialRepositorySize = repositorySize;
Task soonTask = tempTasksRepository.get(0);
String pattern = "HH:mm";
SimpleDateFormat simpleDateFormat = new SimpleDateFormat(pattern);
for (int i= 0; i < initialRepositorySize; i++)
{
for (int j= 0; j < repositorySize; j++)
{
Task tempTask = tempTasksRepository.get(j);
try
{
Date taskTime = simpleDateFormat.parse(tempTask.getTime());
Date soonTaskTime = simpleDateFormat.parse(soonTask.getTime());
// Outputs -1 as date1 is before date2
if (taskTime.compareTo(soonTaskTime) == -1)
{
soonTask = tempTask;
}
}
catch (ParseException e)
{
Log.e(TAG, "error while parsing time in time sort: " + e.toString());
}
}
tasksRepository.add(soonTask);
tempTasksRepository.remove(soonTask);
if ( tempTasksRepository.size() > 0 )
{
soonTask = tempTasksRepository.get(0);
}
repositorySize--;
Try to use SimpleDateFormat with "d-MM-yyyy" pattern:
1. Create SimpleDateFormat
2. Parse listOfSData string array to java.util.Date[]
3. Sort date array using Arrays.sort
4. Convert Date[] to string array using the same SimpleDateFormat

Android Java - Joda Date is slow

Using Joda 1.6.2 with Android
The following code hangs for about 15 seconds.
DateTime dt = new DateTime();
Originally posted this post
Android Java - Joda Date is slow in Eclipse/Emulator -
Just tried it again and its still not any better. Does anyone else have this problem or know how to fix it?
I also ran into this problem. Jon Skeet's suspicions were correct, the problem is that the time zones are being loaded really inefficiently, opening a jar file and then reading the manifest to try to get this information.
However, simply calling DateTimeZone.setProvider([custom provider instance ...]) is not sufficient because, for reasons that don't make sense to me, DateTimeZone has a static initializer where it calls getDefaultProvider().
To be completely safe, you can override this default by setting this system property before you ever call anything in the joda.
In your activity, for example, add this:
#Override
public void onCreate(Bundle savedInstanceState) {
System.setProperty("org.joda.time.DateTimeZone.Provider",
"com.your.package.FastDateTimeZoneProvider");
}
Then all you have to do is define FastDateTimeZoneProvider. I wrote the following:
package com.your.package;
public class FastDateTimeZoneProvider implements Provider {
public static final Set<String> AVAILABLE_IDS = new HashSet<String>();
static {
AVAILABLE_IDS.addAll(Arrays.asList(TimeZone.getAvailableIDs()));
}
public DateTimeZone getZone(String id) {
if (id == null) {
return DateTimeZone.UTC;
}
TimeZone tz = TimeZone.getTimeZone(id);
if (tz == null) {
return DateTimeZone.UTC;
}
int rawOffset = tz.getRawOffset();
//sub-optimal. could be improved to only create a new Date every few minutes
if (tz.inDaylightTime(new Date())) {
rawOffset += tz.getDSTSavings();
}
return DateTimeZone.forOffsetMillis(rawOffset);
}
public Set getAvailableIDs() {
return AVAILABLE_IDS;
}
}
I've tested this and it appears to work on Android SDK 2.1+ with joda version 1.6.2. It can of course be optimized further, but while profiling my app (mogwee), this decreased the DateTimeZone initialize time from ~500ms to ~18ms.
If you are using proguard to build your app, you'll have to add this line to proguard.cfg because Joda expects the class name to be exactly as you specify:
-keep class com.your.package.FastDateTimeZoneProvider
I strongly suspect it's because it's having to build the ISO chronology for the default time zone, which probably involves reading all the time zone information in.
You could verify this by calling ISOChronology.getInstance() first - time that, and then time a subsequent call to new DateTime(). I suspect it'll be fast.
Do you know which time zones are going to be relevant in your application? You may find you can make the whole thing much quicker by rebuilding Joda Time with a very much reduced time zone database. Alternatively, call DateTimeZone.setProvider() with your own implementation of Provider which doesn't do as much work.
It's worth checking whether that's actually the problem first, of course :) You may also want to try explicitly passing in the UTC time zone, which won't require reading in the time zone database... although you never know when you'll accidentally trigger a call which does require the default time zone, at which point you'll incur the same cost.
I only need UTC in my application. So, following unchek's advice, I used
System.setProperty("org.joda.time.DateTimeZone.Provider", "org.joda.time.tz.UTCProvider");
org.joda.time.tz.UTCProvider is actually used by JodaTime as the secondary backup, so I thought why not use it for primary use? So far so good. It loads fast.
The top answer provided by plowman is not reliable if you must have precise timezone computations for your dates. Here is an example of problem that can happen:
Suppose your DateTime object is set for 4:00am, one hour after daylight savings have started that day. When Joda checks the FastDateTimeZoneProvider provider before 3:00am (i.e., before daylight savings) it will get a DateTimeZone object with the wrong offset because the tz.inDaylightTime(new Date()) check will return false.
My solution was to adopt the recently published joda-time-android library. It uses the core of Joda but makes sure to load a time zone only as needed from the raw folder. Setting up is easy with gradle. In your project, extend the Application class and add the following on its onCreate():
public class MyApp extends Application {
#Override
public void onCreate() {
super.onCreate();
JodaTimeAndroid.init(this);
}
}
The author wrote a blog post about it last year.
I can confirm this issue with version 1, 1.5 and 1.62 of joda. Date4J is working well for me as an alternative.
http://www.date4j.net/
I just performed the test that #"Name is carl" posted, on several devices. I must note that the test is not completely valid and the results are misleading (in that it only reflects a single instance of DateTime).
From his test, When comparing DateTime to Date, DateTime is forced to parse the String ts, where Date does not parse anything.
While the initial creation of the DateTime was accurate, it ONLY takes that much time on the very FIRST creation... every instance after that was 0ms (or very near 0ms)
To verify this, I used the following code and created 1000 new instances of DateTime on an OLD Android 2.3 device
int iterations = 1000;
long totalTime = 0;
// Test Joda Date
for (int i = 0; i < iterations; i++) {
long d1 = System.currentTimeMillis();
DateTime d = new DateTime();
long d2 = System.currentTimeMillis();
long duration = (d2 - d1);
totalTime += duration;
log.i(TAG, "datetime : " + duration);
}
log.i(TAG, "Average datetime : " + ((double) totalTime/ (double) iterations));
My results showed:
datetime : 264
datetime : 0
datetime : 0
datetime : 0
datetime : 0
datetime : 0
datetime : 0
...
datetime : 0
datetime : 0
datetime : 1
datetime : 0
...
datetime : 0
datetime : 0
datetime : 0
So, the result was that the first instance was 264ms and more than 95% of the following were 0ms (I occasionally had a 1ms, but never had a value larger than 1ms).
Hope this gives a clearer picture of the cost of using Joda.
NOTE: I was using joda-time version 2.1
Using dlew/joda-time-android gradle dependency it takes only 22.82 ms (milliseconds). So I recommend you using it instead of overriding anything.
I found solution for me. I load UTC and default time zone. So it's loads very fast. And I think in this case I need catch broadcast TIME ZONE CHANGE and reload default time zone.
public class FastDateTimeZoneProvider implements Provider {
public static final Set<String> AVAILABLE_IDS = new HashSet<String>();
static {
AVAILABLE_IDS.add("UTC");
AVAILABLE_IDS.add(TimeZone.getDefault().getID());
}
public DateTimeZone getZone(String id) {
int rawOffset = 0;
if (id == null) {
return DateTimeZone.getDefault();
}
TimeZone tz = TimeZone.getTimeZone(id);
if (tz == null) {
return DateTimeZone.getDefault();
}
rawOffset = tz.getRawOffset();
//sub-optimal. could be improved to only create a new Date every few minutes
if (tz.inDaylightTime(new Date())) {
rawOffset += tz.getDSTSavings();
}
return DateTimeZone.forOffsetMillis(rawOffset);
}
public Set getAvailableIDs() {
return AVAILABLE_IDS;
}
}
This quick note to complete the answer about date4j from #Steven
I ran a quick and dirty benchmark comparing java.util.Date, jodatime and date4j on the weakest android device I have (HTC Dream/Sapphire 2.3.5).
Details : normal build (no proguard), implementing the FastDateTimeZoneProvider for jodatime.
Here's the code:
String ts = "2010-01-19T23:59:59.123456789";
long d1 = System.currentTimeMillis();
DateTime d = new DateTime(ts);
long d2 = System.currentTimeMillis();
System.err.println("datetime : " + dateUtils.durationtoString(d2 - d1));
d1 = System.currentTimeMillis();
Date dd = new Date();
d2 = System.currentTimeMillis();
System.err.println("date : " + dateUtils.durationtoString(d2 - d1));
d1 = System.currentTimeMillis();
hirondelle.date4j.DateTime ddd = new hirondelle.date4j.DateTime(ts);
d2 = System.currentTimeMillis();
System.err.println("date4j : " + dateUtils.durationtoString(d2 - d1));
Here are the results :
debug | normal
joda : 3s (3577ms) | 0s (284ms)
date : 0s (0) | 0s (0s)
date4j : 0s (55ms) | 0s (2ms)
One last thing, the jar sizes :
jodatime 2.1 : 558 kb
date4j : 35 kb
I think I'll give date4j a try.
You could also checkout Jake Wharton's JSR-310 backport of the java.time.* packages.
This library places the timezone information as a standard Android asset and provides a custom loader for parsing it efficiently. [It] offers the standard APIs in Java 8 as a much smaller package in not only binary size and method count, but also in API size.
Thus, this solution provides a smaller binary-size library with a smaller method count footprint, combined with an efficient loader for Timezone data.
As already mentioned you could use the joda-time-android library.
Do not use FastDateTimeZoneProvider proposed by #ElijahSh and #plowman. Because it is treat DST offset as standart offset for the selected timezone. As it will give "right" results for the today and for the rest of a half of a year before the next DST transition occurs. But it will defenetly give wrong result for the day before DST transition, and for the day after next DST transition.
The right way to utilize system's timezones with JodaTime:
public class AndroidDateTimeZoneProvider implements org.joda.time.tz.Provider {
#Override
public Set<String> getAvailableIDs() {
return new HashSet<>(Arrays.asList(TimeZone.getAvailableIDs()));
}
#Override
public DateTimeZone getZone(String id) {
return id == null
? null
: id.equals("UTC")
? DateTimeZone.UTC
: Build.VERSION.SDK_INT >= Build.VERSION_CODES.N
? new AndroidNewDateTimeZone(id)
: new AndroidOldDateTimeZone(id);
}
}
Where AndroidOldDateTimeZone:
public class AndroidOldDateTimeZone extends DateTimeZone {
private final TimeZone mTz;
private final Calendar mCalendar;
private long[] mTransition;
public AndroidOldDateTimeZone(final String id) {
super(id);
mTz = TimeZone.getTimeZone(id);
mCalendar = GregorianCalendar.getInstance(mTz);
mTransition = new long[0];
try {
final Class tzClass = mTz.getClass();
final Field field = tzClass.getDeclaredField("mTransitions");
field.setAccessible(true);
final Object transitions = field.get(mTz);
if (transitions instanceof long[]) {
mTransition = (long[]) transitions;
} else if (transitions instanceof int[]) {
final int[] intArray = (int[]) transitions;
final int size = intArray.length;
mTransition = new long[size];
for (int i = 0; i < size; i++) {
mTransition[i] = intArray[i];
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
public TimeZone getTz() {
return mTz;
}
#Override
public long previousTransition(final long instant) {
if (mTransition.length == 0) {
return instant;
}
final int index = findTransitionIndex(instant, false);
if (index <= 0) {
return instant;
}
return mTransition[index - 1] * 1000;
}
#Override
public long nextTransition(final long instant) {
if (mTransition.length == 0) {
return instant;
}
final int index = findTransitionIndex(instant, true);
if (index > mTransition.length - 2) {
return instant;
}
return mTransition[index + 1] * 1000;
}
#Override
public boolean isFixed() {
return mTransition.length > 0 &&
mCalendar.getMinimum(Calendar.DST_OFFSET) == mCalendar.getMaximum(Calendar.DST_OFFSET) &&
mCalendar.getMinimum(Calendar.ZONE_OFFSET) == mCalendar.getMaximum(Calendar.ZONE_OFFSET);
}
#Override
public boolean isStandardOffset(final long instant) {
mCalendar.setTimeInMillis(instant);
return mCalendar.get(Calendar.DST_OFFSET) == 0;
}
#Override
public int getStandardOffset(final long instant) {
mCalendar.setTimeInMillis(instant);
return mCalendar.get(Calendar.ZONE_OFFSET);
}
#Override
public int getOffset(final long instant) {
return mTz.getOffset(instant);
}
#Override
public String getShortName(final long instant, final Locale locale) {
return getName(instant, locale, true);
}
#Override
public String getName(final long instant, final Locale locale) {
return getName(instant, locale, false);
}
private String getName(final long instant, final Locale locale, final boolean isShort) {
return mTz.getDisplayName(!isStandardOffset(instant),
isShort ? TimeZone.SHORT : TimeZone.LONG,
locale == null ? Locale.getDefault() : locale);
}
#Override
public String getNameKey(final long instant) {
return null;
}
#Override
public TimeZone toTimeZone() {
return (TimeZone) mTz.clone();
}
#Override
public String toString() {
return mTz.getClass().getSimpleName();
}
#Override
public boolean equals(final Object o) {
return (o instanceof AndroidOldDateTimeZone) && mTz == ((AndroidOldDateTimeZone) o).getTz();
}
#Override
public int hashCode() {
return 31 * super.hashCode() + mTz.hashCode();
}
private long roundDownMillisToSeconds(final long millis) {
return millis < 0 ? (millis - 999) / 1000 : millis / 1000;
}
private int findTransitionIndex(final long millis, final boolean isNext) {
final long seconds = roundDownMillisToSeconds(millis);
int index = isNext ? mTransition.length : -1;
for (int i = 0; i < mTransition.length; i++) {
if (mTransition[i] == seconds) {
index = i;
}
}
return index;
}
}
The AndroidNewDateTimeZone.java same as "Old" one but based on android.icu.util.TimeZone instead.
I have created a fork of Joda Time especially for this. It loads for only ~29 ms in debug mode and ~2ms in release mode. Also it has less weight as it doesn't include timezone database.

Categories

Resources