I'm trying to detect patterns of knocking on the surface that the device is located on.
For example, if a user knocks one time on the surface, run method A. If the user knocks two times, run method B.
I have everything I need to make this happen except for the logics in the onSensorChanged method.
This is my code right now:
#Override
public void onSensorChanged(SensorEvent event) {
float x = event.values[0];
float y = event.values[1];
float z = event.values[2];
//Check time interval, not sure if this is correct though.
long actualTime = System.currentTimeMillis();
if ((actualTime - lastUpdate) > 100) {
long diffTime = (actualTime - lastUpdate);
lastUpdate = actualTime;
//This is where the magic should happen
}
}
I guess the main question is, how do I detect vibrations? Almost all other examples on the net is about how to detect shakes and movement.
Real answer- you're going to need to study DSP to get good results. This is a non-trivial problem.
Quick overview- when a vibration occurs, you're going to see a sinusoidal attenuating wave pattern (the attenuating signal after the main vibration is called "ringing" and is a bad thing for us- it means we need to separate ringing from real results). This can be detected and a vibration signalled based on looking for rapid changes in amplitude on the downwards vector (whichever one has gravity on it at the moment). The relative heights of the peak of the waves should be the relative strength of the knock.
So detecting one knock is fairly easy. Things that aren't easy:
*Telling the difference between a knock and footsteps across the room- both cause vibrations. They'll look the same. You may be able to filter it out via frequency analysis and filters
*Telling two knocks vs one knock in a short time frame. The second knock tends to be weaker, and will be difficult to tell apart form the ringing of the first knock. It may also have destructive interference with the first wave.
*Telling exactly when a knock occurred. There will be a time delay that may not be constant, and trying to figure it out means trying to find an exact peak. Difficult to do with noise.
*Telling a knock in a noisy environment (vibrationally noisy, not sound). Again, you'll need filtering.
I've actually done this, somewhat. And failed mostly I think. We were able to detect knocks well, but not to filter out noise at all. Of course we were looking for extremely small (1 finger) knocks, if you're looking for sharp raps you'll have fewer problems as the spike will be larger compared to the noise level. If you're expecting a single sharp knock the basics of looking for large spikes and ignoring secondary spikes for N milliseconds afterwards may be enough for you. If it isn't you're going to spend a lot of time on this.
Related
Attempt to measure distance based acceleration (accelerometer mobile). If that's true
Accelerometer {
id: accel
dataRate: 1000 / 25
onReadingChanged: {
console.log(reading.x, reading.y, reading.z);
}
}
In console
D/libsensor.so(16533): qrc:/main.qml:20 (onReadingChanged): qml: 1.359906554222107,8.791508674621582,-0.4405331015586853
Now when you display information and having the mobile completely still (motionless). Shows acceleration in all axes, which is absurd! You have any idea why?
That's certainly not absurd.
According to Einstein's widely accepted (but still disturbing) theories, your phone can't tell if it's sitting still on planet Earth or accelerating inside a spaceship in deep space - that's called the "equivalence principle". So it's just assuming it's in an accelerating spaceship, because why not ? And that's so much cooler, don't you think ?
If you're near (or on) a planet and reading a zero acceleration, that's bad news, because that means you're freefalling in the distorted spacetime around the planet, and you're probably about to hit something.
You're reading an acceleration of about 9m/s^2, which is close to Earth's g value, so that's approximatively right, depending on your phone orientation. Maybe the accerelometer calibration is not quite right, you can test it with a dedicated application, if you've not done it already. NB Some apps will compensate for the gravity of Earth.
Of course, there's also the possibility of bugs in the phone or in Qt or in your code, or hardware failure, but you have to know what to expect.
Hope that helps.
I am currently developing a game for Android, and I would like your expertise on an issue that I have been having.
Background:
My game incorporates frame rate independent motion, which takes into
account the delta time value before performing necessary Velocity
calculations.
The game is a traditional 2D platformer.
The Issue:
Here's my issue (simplified). Let's pretend that my character is a square standing on top of a platform (with "gravity" being a constant downward velocity of characterVelocityDown).
I have defined the collision detection as follows (assuming Y axis points downwards):
Given characterFootY is the y-coordinate of the base of my square character, platformSurfaceY is the upper y-coordinate of my platform, and platformBaseY is the lower y-coordinate of my platform:
if (characterFootY + characterVelocityDown > platformSurfaceY && characterFootY + characterDy < platformBaseY) {
//Collision Is True
characterFootY = platformSurfaceY;
characterVelocityDown = 0;
} else{
characterVelocityDown = deltaTime * 6;
This approach works perfectly fine when the game is running at regular speed; however, if the game slows down, the deltaTime (which is the elapsed time between the previous frame and the current frame) becomes large, and characterFootY + characterVelocityDown exceed the boundaries that define collision detection and the character just falls straight through (as if teleporting).
How should I approach this issue to prevent this?
Thanks in advance for your help and I am looking forward to learning from you!
What you need to do is to run your physics loop with constant delta time and iterate it as many time as it need with current tick.
const float PHYSICS_TICK = 1/60.f; // 60 FPS
void Update( float dt )
{
m_dt += dt;
while( m_dt > PHYSICS_TICK )
{
UpdatePhysics( PHYSICS_TICK );
m_dt -= PHYSICS_TICK;
}
}
There are various technics used to handle the tick left ( m_dt )
Caps for miniumum tick and maximum tick are also a must.
I guess the issue here is that slowdowns are inevitable. You can try and optimize the code but you'll always have users with slow devices or busy sections of your game where it takes a little longer than usual to process it all. Instead of assuming a consistent delta, assume the opposite. Code under the realization that someone could try installing it on an abacus.
So basically, as SeveN says, make your game loop handle slowdowns. The only real way to do this (in my admittedly limited experience) would be to place a cap on how large delta can be. This will result in your clock not running on time exactly, but when you think about it, that's how most games handle slowdown. You don't fire up StarCraft on your pentium 66 and have it run at 5 FPS but full speed, it slow down and processes it as normal, albeit at a slideshow.
If you did such a thing, during periods of slowdown in your game, it'd visibly slow down... but the calculations should still all be spot on.
edit: just realised you're SeveN. Well done.
I'm in a little bit weird situation. The situation I currently have is typically a good one - no gyro drift at all - but I have no clue why this is the case. I expected the gyroscope to drift a lot as reported everywhere. Therefore this question to find the reason why I do not see any drift.
I use a Galaxy Nexus (Android 4.0.3) and its gyroscope to do some orientation change detection in the end. In the first place, I just wanted to log the sensor readings and expected to see large drifting values as for example here. Also on other websites I read of drifting of about 1 degree per second or similar measurements.
My code to log the sensor data is very basic:
SensorManager sm = (SensorManager) getSystemService(SENSOR_SERVICE);
LogSensorEventListener listener = new LogSensorEventListener(
SensorLoggerActivity.this, Sensor.TYPE_GYROSCOPE);
sm.registerListener(listener, sm.getDefaultSensor(Sensor.TYPE_GYROSCOPE),
SensorManager.SENSOR_DELAY_FASTEST);
LogSensorEventListener is also a very basic implementation of the SensorEventListenerInterface:
#Override
public void onSensorChanged(SensorEvent event) {
final float dT = (event.timestamp - mTimestamp) / 1000000000.f;
if (dT < 1) { // just a fix for the first step
mRelZ += event.values[2] * dT;
list.add(mRelZ);
list2.add(event.timestamp);
}
mTimestamp = event.timestamp;
mRelZ is initially set to 0 and the two lists should keep track of time and measured value. If finished with my measurement (clicking a button) the values are written to file:
try {
for (int i = 0; i < list.size(); i++) {
long time = list2.get(i);
if (mStartTime < 0) {
mStartTime = time;
time = 0;
} else {
time = time - mStartTime;
}
float timef = time / 1000000000.0f;
sb.append(timef);
sb.append(";");
sb.append(Math.toDegrees(list.get(i)));
sb.append("\n");
}
mOutFileStream.write(sb.toString().getBytes());
mOutFileStream.flush();
mOutFileStream.close();
} catch (IOException e) {
}
Everything works fine but the only drift I can see (for example when having the device lying on a table and logging values for let's say 60 seconds) is about 0.2 degree.
If I move the device to get something like in the screenshot above no drift can be observed at all...
What I'm I doing wrong (or right?)??
Thanks for any advice!
the gyro you have might be a post-filtered one, i found this in some of the SAMSUNG I9100 devices. they use gyros produced by INVENSENSE CORP.
edit 2014/12/10 for commenting #Lourenço Castro
i believe #Lourenço Castro was right about the 'factory drift'(or zero-drift) and 'accumulated drift';
Concerning to complementary/kalman filters, on Android, the 6dof(ACC+GYRO) impl. works fine, it can remove both factory and accumulated drift of gyroscope thanks to accelerometer's calibration;
However, the 9dof impl., or adding a magnetometer sensor into consideration, filter runs into status you dont want. According to my tests, it is caused by uncalibed status of magnetometer which need guys to shake (known as drawing 'eight')the phone to remove before fusion.
9dof provides a full rotation estimation while 6dof can not handle the accumulated drift of rotating around y axis(see android's ref. for axis definition). And I dont think that 'shaking-and-drawing-number-8' before one starts an app is a good UE, so we have to go back to 6dof method and try to find a way to remove factory drift of rotation around y-axis.
(a lot of boring but amazing content about complementary/kalman filter should be here. but i guess those come here already know it.)
You can try a 360 panorama app included in Google Camera which can be downloaded from market. This app use a visual-aid(image processing based motion estimation) for calibrating the sensor before we really start to capturing, it's easy to verify this. And no use of Magnetometer, i guess.
So my advice to use sensor-fusion on Android is:
1. no magnetometer; (dont know if this is a hardware problem or can be solved by software.)
2. accelerometer+gyroscope provides smooth and stable 6dof motion estimation;
3. try to solve the drift around y-axis, mainly means that visual-method should be added to;
4. try 3 and try 3...
Maybe someone will run into this question and i hope all above might be helpful.
thanks to those posts related to this questions on StackOverflow.
i dont remember your names exactly but you all helped me a lot. :)
I was browsing for this subject and, although this is an old question, I don't believe the accepted answer is correct.
The drift that is "reported everywhere" is caused by the integration of noisy gyroscope data (as seen on the link provided by the O.P.), not by simply outputting the sensor data. You will need this integration to calculate orientation changes over time.
Longer integration periods will contain larger noise amounts which will accumulate drift fairly quickly. I believe the internal filtering of the signal which happens on Invensense hardware is used to remove drift caused by their own pre-processing of the gyroscope.
In Android's case, in API 18 (Jelly Bean MR2), a GYROSCOPE_UNCALIBRATED sensor was added, in which you can (presumably) verify this factory drift calibration. Anyway, when you try to integrate either the calibrated and uncalibrated sensor events, you will get drift, since both are pretty noisy. To reduce this issue you will have to delve into complementary or Kalman filters.
(Sorry about not posting more informational links, not enough reputation).
Hope this helps future users.
Using only the phone's (Android) built in accelerometer, how would I go about finding its velocity?
I have been tinkering with the maths of this but whatever function I come up with tends to lead to exponential growth of the velocity. I am working from the assumption that on startup of the App, the phone is at a standstill. This should definitely make finding the velocity (at least roughly) possible.
I have a decent background in physics and math too, so I shouldn't have any difficulty with any concepts here.
How should I do it?
That will really depend on what the acceleration is and for how long. A mild, long acceleration could be measurable, but any sudden increase in acceleration, followed by a constant velocity, will make your measurements quite difficult and prone to error.
Assuming constant acceleration, the formula is extremely simple: a = (V1-V0)/t . So, knowing the time and the acceleration, and assuming V0 = 0, then V1 = a*t
In a more real world, you probably won't have a constant acceleration, so you should calculate Delta V for each measurement, and adding all those changes in velocity to get the final velocity. Always consider that you won't have a continuous acceleration data, so this is the most feasible way (i.e, real data vs integral math theory).
In any way, even in the best scenario, you will end up with a very high error margin, so I do not recommend this approach for any app that truly depends on real velocities.
First, you have to remove the acceleration due to gravity from the accelerometer data. Then it's just a matter of integrating the acceleration to get the velocity. Don't forget that acceleration and velocity are properly vectors, not scalars, and that you will also have to track rotation of the phone in space to properly determine the orientation of the acceleration vector with respect to the calculated velocity vector.
There is nothing else to do but agree with the reasonable arguments put forward in all the great answers above, however if you are the pragmatic type like me, I need to come up with a solution that works somehow.
I suffered a similar problem to yours and I decided to make my own solution after not finding any on-line. I only needed a simple "tilt" input for controlling a game so this solution will probably NOT work for more complex needs, however I decided to share it in case others where looking for something similar.
NOTE: I have pasted my entire code here, and it is free to use for any purpose.
Basically what I do in my code is to look for accelerometer sensor. If not found, tilt feedback will be disabled. If accelerometer sensor is present, I look for magnetic field sensor, and if it is present, I get my tilt angle the recommended way by combining accelerometer and magnetic field data.
public TiltSensor(Context c) {
man = (SensorManager) c.getSystemService(Context.SENSOR_SERVICE);
mag_sensor = man.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
acc_sensor = man.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
has_mag = man.registerListener(this, mag_sensor, delay);
has_acc = man.registerListener(this, acc_sensor, delay);
if (has_acc) {
tiltAvailble = true;
if (has_mag) {
Log.d("TiltCalc", "Using accelerometer + compass.");
}
else {
Log.d("TiltCalc", "Using only accelerometer.");
}
}
else {
tiltAvailble = false;
Log.d("TiltCalc", "No acceptable hardware found, tilt not available.");
//No use in having listeners registered
pause();
}
}
If however only the accelerometer sensor was present, I fall back to accumulating the acceleration, that is continuously damped (multiplied by 0.99) to remove any drift. For my simple tilt needs this works great.
#Override
public void onSensorChanged(SensorEvent e) {
final float[] vals = e.values;
final int type = e.sensor.getType();
switch (type) {
case (Sensor.TYPE_ACCELEROMETER): {
needsRecalc = true;
if (!has_mag) {
System.arraycopy(accelerometer, 0, old_acc, 0, 3);
}
System.arraycopy(vals, 0, accelerometer, 0, 3);
if (!has_mag) {
for (int i = 0; i < 3; i++) {
//Accumulate changes
final float sensitivity = 0.08f;
dampened_acc[i] += (accelerometer[i] - old_acc[i]) * sensitivity;
//Even out drift over time
dampened_acc[i] *= 0.99;
}
}
}
break;
case (Sensor.TYPE_MAGNETIC_FIELD): {
needsRecalc = true;
System.arraycopy(vals, 0, magnetic_field, 0, 3);
}
break;
}
}
In conclusion I will just repeat that this is probably not "correct" in any way, it simply works as a simple input to a game. To use this code I simply do something like the following (yes magic constants are bad mkay):
Ship ship = mShipLayer.getShip();
mTiltSensor.getTilt(vals);
float deltaY = -vals[1] * 2;//1 is the index of the axis we are after
float offset = ((deltaY - (deltaY / 1.5f)));
if (null != ship) {
ship.setOffset(offset);
}
Enjoi!
Integrating acceleration to get velocity is an unstable problem and your error will diverge after a couple of seconds or so. Phone accelerometers are also not very accurate, which doesn't help, and some of them don't allow you to distinguish between tilt and translation easily, in which case you're really in trouble.
The accelerometers in a phone are pretty much useless for such a task. You need highly accurate accelerometers with very low drift - something which is way beyond what you will find in a phone. At best you might get useful results for a few seconds, or if very lucky for a minute or two after which the results become meaningless.
Also, you need to have a three axis gyroscope which you would use to integrate the velocity in the right direction. Some phones have gyros, but they are even poorer than the accelerometers as far as drift and accuracy are concerned.
One possibly useful application though would be to use the accelerometers in conjunction with gyros or the magnetic compass to fill in for missing data from the GPS. Each time the GPS gives a good fix one would reset the initial conditions of position, speed and orientation and the accelerometers would provide the data until the next valid GPS fix.
Gravity is going to destroy all of your measurements. The phone, at standstill, is experiencing a high constant upward (yes, UP) acceleration. An accelerometer can't distinguish between acceleration and gravity (technically, they are the same), so it would get to extremely high velocities after a few seconds.
If you never tilt your accelerometer even slightly, then you can simply subtract the constant gravitional pull from the z-axis (or whichever axis is pointing up/down), but thats quite unlikely.
Basically, you have to use a complicated system of a gyroscope/magnetometor and an accelerometer to calculate the exact direction of gravity and then subtract the acceleration.
v = Integral(a) ?
Generally though, I'd think the inaccuracies in the accelerometers would make this quite tough
If the phone is at standstil, you have ZERO acceleration, so your speed is 0. Probably you should find location data from GPS and get the associated time samples and compute velocity distance over time.
I'm writing an application and my aim is to detect when a user is walking.
I'm using a Kalman filter like this:
float kFilteringFactor=0.6f;
gravity[0] = (accelerometer_values[0] * kFilteringFactor) + (gravity[0] * (1.0f - kFilteringFactor));
gravity[1] = (accelerometer_values[1] * kFilteringFactor) + (gravity[1] * (1.0f - kFilteringFactor));
gravity[2] = (accelerometer_values[2] * kFilteringFactor) + (gravity[2] * (1.0f - kFilteringFactor));
linear_acceleration[0] = (accelerometer_values[0] - gravity[0]);
linear_acceleration[1] = (accelerometer_values[1] - gravity[1]);
linear_acceleration[2] = (accelerometer_values[2] - gravity[2]);
float magnitude = 0.0f;
magnitude = (float)Math.sqrt(linear_acceleration[0]*linear_acceleration[0]+linear_acceleration[1]*linear_acceleration[1]+linear_acceleration[2]*linear_acceleration[2]);
magnitude = Math.abs(magnitude);
if(magnitude>0.2)
//walking
The array gravity[] is initialized with 0s.
I can detect when a user is walking or not (looking at the value of the magnitude of the acceleration vector), but my problem is that when a user is not walking and he moves the phones, it seems that he is walking.
Am I using the right filter?
Is it right to watch only the magnitude of the vector or have I to look at the single values ??
Google provides an API for this called DetectedActivity that can be obtained using the ActivityRecognitionApi. Those docs can be accessed here and here.
DetectedActivity has the method public int getType() to get the current activity of the user and also public int getConfidence() which returns a value from 0 to 100. The higher the value returned by getConfidence(), the more certain the API is that the user is performing the returned activity.
Here is a constant summary of what is returned by getType():
int IN_VEHICLE The device is in a vehicle, such as a car.
int ON_BICYCLE The device is on a bicycle.
int ON_FOOT The device is on a user who is walking or running.
int RUNNING The device is on a user who is running.
int STILL The device is still (not moving).
int TILTING The device angle relative to gravity changed significantly.
int UNKNOWN Unable to detect the current activity.
int WALKING The device is on a user who is walking.
My first intuition would be to run an FFT analysis on the sensor history, and see what frequencies have high magnitudes when walking.
It's essentially seeing what walking "sounds like", treating the accelerometer sensor inputs like a microphone and seeing the frequencies that are loud when walking (in other words, at what frequency is the biggest acceleration happening).
I'd guess you'd be looking for a high magnitude at some low frequency (like footstep rate) or maybe something else. It would be interesting to see the data.
My guess is you run the FFT and look for the magnitude at some frequency to be greater than some threshold, or the difference between magnitudes of two of the frequencies is more than some amount. Again, the actual data would determine how you attempt to detect it.
For walking detection I use the derivative applied to the smoothed signal from accelerometer. When the derivative is greater than threshold value I can suggest that it was a step. But I guess that it's not best practise, furthermore it only works when the phone is placed in a pants pocket.
The following code was used in this app https://play.google.com/store/apps/details?id=com.tartakynov.robotnoise
#Override
public void onSensorChanged(SensorEvent event) {
if (event.sensor.getType() != Sensor.TYPE_ACCELEROMETER){
return;
}
final float z = smooth(event.values[2]); // scalar kalman filter
if (Math.abs(z - mLastZ) > LEG_THRSHOLD_AMPLITUDE)
{
mInactivityCount = 0;
int currentActivity = (z > mLastZ) ? LEG_MOVEMENT_FORWARD : LEG_MOVEMENT_BACKWARD;
if (currentActivity != mLastActivity){
mLastActivity = currentActivity;
notifyListeners(currentActivity);
}
} else {
if (mInactivityCount > LEG_THRSHOLD_INACTIVITY) {
if (mLastActivity != LEG_MOVEMENT_NONE){
mLastActivity = LEG_MOVEMENT_NONE;
notifyListeners(LEG_MOVEMENT_NONE);
}
} else {
mInactivityCount++;
}
}
mLastZ = z;
}
EDIT: I don't think it's accurate enough since when walking normally the average acceleration would be near 0. The most you could do measuring acceleration is detect when someone starts walking or stops (But as you said, it's difficult to filter it from the device moved by someone standing at one place)
So... what I wrote earlier, probably wouldn't work anyway:
You can "predict" whether the user is moving by discarding when the user is not moving (obvious), And first two options coming to my mind are:
Check whether the phone is "hidden", using proximity and light sensor (optional). This method is less accurate but easier.
Controlling the continuity of the movement, if the phone is moving for more than... 10 seconds and the movement is not despicable, then you consider he is walking. I know is not perfet either, but it's difficult wihout using any kind of positioning, by the way... why don't you just use LocationManager?
Try detecting the up and down oscillations, the fore and aft oscillations and the frequency of each and make sure they stay aligned within bounds on average, because you would detect walking and specifically that person's gait style which should remain relatively constant for several steps at once to qualify as moving.
As long as the last 3 oscillations line up within reason then conclude walking is occurring as long as this also is true:-
You measure horizontal acceleration and update a velocity value with it. Velocity will drift with time, but you need to keep a moving average of velocity smoothed over the time of a step, and as long as it doesn't drift more than say half of walking speed per 3 oscillations then it's walking but only if it initially rose to walking speed within a short time ie half a second or 2 oscillations perhaps.
All of that should just about cover it.
Of course, a little ai would help make things simpler or just as complex but amazingly accurate if you considered all of these as inputs to a NN. Ie preprocessing.