Recenter or Reorient view with Cardboard SDK on Unity - android

With Unity, the CardboardHead script is added to the main camera and that handles everything quite nicely, but I need to be able to "recenter" the view on demand and the only option I see so far is to rorate the entire scene and it seems like this is something the would address first-hand and I can't find anything in the docs.
With Oculus Mobile SDK (GearVR), it would be OVRCamera.ResetCameraPositionOrientation(Vector3.one, Vector3.zero, Vector3.up, Vector3.zero); though they handle it nicely each time the viewer is put on so it's rarely needed there.

There's a "target" parameter on the CardboardHead that lets you use to another gameobject as a reference for rotation. Or you can use a dummy parent gameobject. Either way, when you want to recenter, you set this reference object's rotation so that the CardboardHead is now pointing forward. Add this function to an script on the CardboardHead (or just add it into that script):
public void Recenter() {
Transform reference = target != null ? target : transform.parent;
if (reference != null) {
reference.rotation = Quaternion.Inverse(transform.rotation) * reference.rotation;
// next line is optional -- try it with and without
reference.rotation = Quaternion.FromToRotation(reference.up, Vector3.up) * reference.rotation;
}
}

Cardboard.SDK.Recenter (); should do the trick.
Recenter orientation Added Recenter() function to Cardboard.SDK, which resets the head tracker so the phone's current heading becomes the forward direction (+Z axis).
Couldn't find the docs for the API/SDK but it's in the release notes for the v0.4.5 Update.

You can rotate the Cardboard Main to point in a certain direction.
This is what worked for me when I wanted the app to start up pointing a certain way. Since the CardboardHead points at Vector3.zero on startup if no target is assigned, I ran a function during Start() for the CardboardMain that would point in the direction I wanted.
Of course, if you're already rotating CardboardMain for some other reason, it may be possible to use this same method by creating a parent of the CardboardHead (child of CardboardMain) and doing the same thing.

This question is a bit old but for Google VR SDK 1.50+ you can do
transform.eulerAngles = new Vector3(newRot.x, newRot.y, newRot.z);
UnityEngine.VR.InputTracking.Recenter();
also, if you don't want to get confused you also need to catch the GvrEditorEmulator instance and Recenter it as well.
#if UNITY_EDITOR
gvrEditorEmulator.Recenter();
#endif
Recentering GvrEditorEmulator though doesn't seem to work very well at the moment but if you disable it you'll see the recentering works for the main camera.

Related

Generate and export point cloud from Project Tango

After some weeks of waiting I finally have my Project Tango. My idea is to create an app that generates a point cloud of my room and exports this to .xyz data. I'll then use the .xyz file to show the point cloud in a browser! I started off by compiling and adjusting the point cloud example that's on Google's github.
Right now I use the onXyzIjAvailable(TangoXyzIjData tangoXyzIjData) to get a frame of x y and z values; the points. I then save these frames in a PCLManager in the form of Vector3. After I'm done scanning my room, I simple write all the Vector3 from the PCLManager to a .xyz file using:
OutputStream os = new FileOutputStream(file);
size = pointCloud.size();
for (int i = 0; i < size; i++) {
String row = String.valueOf(pointCloud.get(i).x) + " "
+ String.valueOf(pointCloud.get(i).y) + " "
+ String.valueOf(pointCloud.get(i).z) + "\r\n";
os.write(row.getBytes());
}
os.close();
Everything works fine, not compilation errors or crashes. The only thing that seems to be going wrong is the rotation or translation of the points in the cloud. When I view the point cloud everything is messed up; the area I scanned is not recognizable, though the amount of points is the same as recorded.
Could this have to do something with the fact that I don't use PoseData together with the XyzIjData? I'm kind of new to this subject and have a hard time understanding what the PoseData exactly does. Could someone explain it to me and help me fix my point cloud?
Yes, you have to use TangoPoseData.
I guess you are using TangoXyzIjData correctly; but the data you get this way is relative to where the device is and how the device is tilted when you take the shot.
Here's how i solved this:
I started from java_point_to_point_example. In this example they get the coords of 2 different points with 2 different coordinate system and then write those coordinates wrt the base Coordinate frame pair.
First of all you have to setup your exstrinsics, so you'll be able to perform all the transformations you'll need. To do that I call mExstrinsics = setupExtrinsics(mTango) function at the end of my setTangoListener() function. Here's the code (that you can find also in the example I linked above).
private DeviceExtrinsics setupExtrinsics(Tango mTango) {
//camera to IMU tranform
TangoCoordinateFramePair framePair = new TangoCoordinateFramePair();
framePair.baseFrame = TangoPoseData.COORDINATE_FRAME_IMU;
framePair.targetFrame = TangoPoseData.COORDINATE_FRAME_CAMERA_COLOR;
TangoPoseData imu_T_rgb = mTango.getPoseAtTime(0.0,framePair);
//IMU to device transform
framePair.targetFrame = TangoPoseData.COORDINATE_FRAME_DEVICE;
TangoPoseData imu_T_device = mTango.getPoseAtTime(0.0,framePair);
//IMU to depth transform
framePair.targetFrame = TangoPoseData.COORDINATE_FRAME_CAMERA_DEPTH;
TangoPoseData imu_T_depth = mTango.getPoseAtTime(0.0,framePair);
return new DeviceExtrinsics(imu_T_device,imu_T_rgb,imu_T_depth);
}
Then when you get the point Cloud you have to "normalize" it. Using your exstrinsics is pretty simple:
public ArrayList<Vector3> normalize(TangoXyzIjData cloud, TangoPoseData cameraPose, DeviceExtrinsics extrinsics) {
ArrayList<Vector3> normalizedCloud = new ArrayList<>();
TangoPoseData camera_T_imu = ScenePoseCalculator.matrixToTangoPose(extrinsics.getDeviceTDepthCamera());
while (cloud.xyz.hasRemaining()) {
Vector3 rotatedV = ScenePoseCalculator.getPointInEngineFrame(
new Vector3(cloud.xyz.get(),cloud.xyz.get(),cloud.xyz.get()),
camera_T_imu,
cameraPose
);
normalizedCloud.add(rotatedV);
}
return normalizedCloud;
}
This should be enough, now you have a point cloud wrt you base frame of reference.
If you overimpose two or more of this "normalized" cloud you can get the 3D representation of your room.
There is another way to do this with rotation matrix, explained here.
My solution is pretty slow (it takes around 700ms to the dev kit to normalize a cloud of ~3000 points), so it is not suitable for a real time application for 3D reconstruction.
Atm i'm trying to use Tango 3D Reconstruction Library in C using NDK and JNI. The library is well documented but it is very painful to set up your environment and start using JNI. (I'm stuck at the moment in fact).
Drifting
There still is a problem when I turn around with the device. It seems that the point cloud spreads out a lot.
I guess you are experiencing some drifting.
Drifting happens when you use Motion Tracking alone: it consist of a lot of very small error in estimating your Pose that all together cause a big error in your pose relative to the world. For instance if you take your tango device and you walk in a circle tracking your TangoPoseData and then you draw you trajectory in a spreadsheet or whatever you want you'll notice that the Tablet will never return at his starting point because he is drifting away.
Solution to that is using Area Learning.
If you have no clear ideas about this topic i'll suggest watching this talk from Google I/O 2016. It will cover lots of point and give you a nice introduction.
Using area learning is quite simple.
You have just to change your base frame of reference in TangoPoseData.COORDINATE_FRAME_AREA_DESCRIPTION. In this way you tell your Tango to estimate his pose not wrt on where it was when you launched the app but wrt some fixed point in the area.
Here's my code:
private static final ArrayList<TangoCoordinateFramePair> FRAME_PAIRS =
new ArrayList<TangoCoordinateFramePair>();
{
FRAME_PAIRS.add(new TangoCoordinateFramePair(
TangoPoseData.COORDINATE_FRAME_AREA_DESCRIPTION,
TangoPoseData.COORDINATE_FRAME_DEVICE
));
}
Now you can use this FRAME_PAIRS as usual.
Then you have to modify your TangoConfig in order to issue Tango to use Area Learning using the key TangoConfig.KEY_BOOLEAN_DRIFT_CORRECTION. Remember that when using TangoConfig.KEY_BOOLEAN_DRIFT_CORRECTION you CAN'T use learningmode and load ADF (area description file).
So you cant use:
TangoConfig.KEY_BOOLEAN_LEARNINGMODE
TangoConfig.KEY_STRING_AREADESCRIPTION
Here's how I initialize TangoConfig in my app:
TangoConfig config = tango.getConfig(TangoConfig.CONFIG_TYPE_DEFAULT);
//Turning depth sensor on.
config.putBoolean(TangoConfig.KEY_BOOLEAN_DEPTH, true);
//Turning motiontracking on.
config.putBoolean(TangoConfig.KEY_BOOLEAN_MOTIONTRACKING,true);
//If tango gets stuck he tries to autorecover himself.
config.putBoolean(TangoConfig.KEY_BOOLEAN_AUTORECOVERY,true);
//Tango tries to store and remember places and rooms,
//this is used to reduce drifting.
config.putBoolean(TangoConfig.KEY_BOOLEAN_DRIFT_CORRECTION,true);
//Turns the color camera on.
config.putBoolean(TangoConfig.KEY_BOOLEAN_COLORCAMERA, true);
Using this technique you'll get rid of those spreads.
PS
In the Talk i linked above, at around 22:35 they show you how to port your application to Area Learning. In their example they use TangoConfig.KEY_BOOLEAN_ENABLE_DRIFT_CORRECTION. This key does not exist anymore (at least in Java API). Use TangoConfig.KEY_BOOLEAN_DRIFT_CORRECTION instead.

Unity canvas scaler hiding animations in high resolution display

I instantiate the following gameObject, which contains an Animator with the mode "always animate" on, the animation goes for 340ms, after that time I destroy the gameObject.
The gameObject Inspector properties:
I instantiate it using the following code:
instancia = (Instantiate(cardAnimation, new Vector3(0, 0, 0), Quaternion.identity) as GameObject).GetComponent<Image>();
instancia.rectTransform.SetParent(transform);
StartCoroutine(KillOnAnimationEnd());
Here is the Coroutine:
private IEnumerator KillOnAnimationEnd()
{
yield return new WaitForSeconds(0.34f);
DestroyImmediate(instancia);
}
Here is how the animation looks like when simulating in Unity (PC-Windows):
But on android after I open the chest it waits 340ms with nothing happening and then show the information above, does this have something to do with the plataform or is some unity or perhaps code related issue?
NOTE: I also have another animation in another scene that is just a already instantiated gameObject in the Hierarchy with always animated on and it works on Android.
--EDIT--
So I have ran the newest version of the app in a emulator which is almost about 1080x480 and the animation showed just as the PC, also running on a 720p smartphone did the job, the only problem I'm still having is with my QuadHD resolution from Galaxy S6, everything else shows but the animation, I have even tried making the animation run without any script so it runs in a loop, but it doesn't show up in galaxy screen.
Given the news about the issue I think this might change a little bit the perspective of answers and perhaps help someone else solve the same problem in the future.
Okay, figured out the problem, its something to do with "rotation" in animations using Unity3D in 2D mode, gonna be reporting it form Unity so it is fixed.
The solution: Animate your UI only using scale/position, if used rotation it will not show on high resolution display.
I am pretty sure your WaitForSeconds(0.34f) is not working properly because there is no thing such as yield keyword in Java. I recommend you to use a invoke method instead to call your method that destroys your GameObject.

Unable to change FOV of the google card board camera

I am developing a sniper game for android using Google card board unity SDK. Now there is the need to tweak the camera's FOV which leads me to interact a variable named 'mockFieldOfView' in CardBoard.cs. Tweaking that value in the Unity editor is fine but as soon as I make a build for Android it doesn't take effect at all. I'm unable to figure out the issue. Any idea or suggestion would be highly appreciated.
Apologize for the late reply, so ouflak you can see complete Cardboard.cs here Cardboard.cs
You don't want to change "mockFieldOfView". That only affects the in-editor FOV. The value you want to change is "matchMonoFOV" on the StereoController. You also have to set a "CenterOfInterest" game object on the StereoController. It makes the stereo FOV attempt to match the FOV on the Main Camera (or whichever camera has the StereoController script).
See StereoController.cs
Update: v0.4.5 of Cardboard SDK supports your use case. Use "matchByZoom" and set the FOV you want on the StereoController's camera. No center of interest is needed.
I had the same issue and in my case it helped to put the MainCamera closer to the object which was the Cockpit of a car in my case.
In order to put the MainCamera closer than 1 real-world-meter to the object you must change the default-minimum-value in Cardboard.cs - I use the following setting:
private readonly Vector2 defaultComfortableViewingRange = new Vector2(0.0f, 100000.0f);

Touch out from app window AIR for Android

I create app for android in Adobe Flash Professional.
It is fragment of code.
stage.addEventListener( TouchEvent.TOUCH_OUT, _out );
function _out( e:TouchEvent):void
{
trace( "OUT!" );
}
When I move on some view object I obtain message. When I move on the screen and then move out the area of the screen I'm not receiving messages. What do?
Just to be sure, you are trying to trigger a function whenever the cursor is rolled out of the stage. In such a case, a naive option is check the coordinate of the mouse an to check if its on the stage or not. Whenever the cursor crosses the stage dimensions, the function can be triggered.
Another way is to use a transparent object on the stage and check collision of the mouse with that. Whenever the collision detection returns false, the function will be triggered.
TOUCH_OUT will not work on Windows debugging sessions, but it will work on your Android. Don't worry.
To avoid the event being triggered by on-stage objects, just set the property mouseChildren of all your MovieClips to false.

Is this a Digital Compass or Unity limitation?

I'm interested in AR applications of mobile devices and naturally I would like to make better use of the compass.
The only issue I've been having to work against isn't how twitchy the compass is. (Angular Smoothing seems to solve this issue just fine) My main issue is that when the device is held Vertical the compass values start freaking out. Causing an on screen compass to flip about all over the place. I don't have a lot of experience with mobile application development so I'm not sure what would be causing this issue, if its a Unity issue or if its just a limitation of the digital compass. I know other apps do seem to be able to use the compass fine in any orientation, but this is all stupidly new to me.
I've definitely tried moving the phone in a figure of 8. The device I have to play around with is a Nexus 4.
using UnityEngine;
using System.Collections;
public class Compass : MonoBehaviour {
// Use this for initialization
void Start () {
Input.location.Start ();
Input.compass.enabled = true;
}
// Update is called once per frame
void Update ()
{
var heading = Input.compass.trueHeading;
transform.eulerAngles = new Vector3 (0, 0, heading);
}
}
Preamble :)
First of, I'm not an expert (unfortunately) in subjects that I will talk about. But still, I've decided to share my thoughts.
Theory
The problem can be generalized in the following way. You want to have some continuous function that takes a 3D vector (which is device orientation in your case) and returns another vector that is orthogonal to original vector. Theory says (see hairy ball theorem) that for some arguments that function will return zero vectors. In case when such a function is compass, zero vectors are returned when device is oriented vertical (and this fells quite natural if you have ever used an ordinary compass).
Practice
Sometimes you want your app to tell which side of the world does phone back (rear camera) is pointing to.
Or maybe even you want combined approach:
If the phone is oriented flat, show what is the phone's top pointing to.
If the phone is oriented vertical, show what is the phone's back pointing to.
In both cases you need to use gyroscope in addition to compass.

Categories

Resources