How to trick Android to run cpu at max clock speed? - android

Here is some context. I am working on a 3d game on Android, and have been getting fluctuating FPS which is annoying.
Then I profiled the game and figured out that the processors were not always running at max clock speed. In fact, this was due to the fact that the active (as well as default) governor appeared to be 'interactive', which would try to act smart in that it would adjust clock speed according to current load.
I then rooted my device and set the governor to be 'performance', which locks clock speed at max. As the result the game was running super smooth giving a stable fps of 30.
The issue is that you don't have control, as an application, over what governor to use. That is, you cannot do anything if a player has an un-rooted phone, as it is an OS-level thing anyway. Even if they had their phones rooted, it would be still their, not our, judgement to make in which governor profile to activate.
So my question is, what can we do as developers, on application level, to 'trick' processors so that they are believed to have much work to do, which in fact they do not? The goal is to trick whatever governor to set clock speed at max, or at least at some fixed numbers, so that FPS would not fluctuate and make the game run at a performance that is lacking and below user expectations.
Thanks!

Related

What is the maximum framerate achievable on Android and iOS devices with Unity3d?

I was wondering what is the maximum framerate that could be achieved on iOS and Android devices with Unity3d. Can 60 fps and 100 fps be reached?
What FPS should I provide:
Android as a platform aims to provide 60fps as a standard. However, keep in mind this is for Applications which come nowhere near the GPU requirements of a game.
If you can't do all of the calculations you require in 16ms (60fps) you should aim to provide 30fps and provide the user a consistent experience. User's will quickly detect variations in frame rate and interpret this as a performance issue with their phone.
Never over-promise and under-deliver.
Modern phones claim to have quad core processors with other incredible hardware profiles. Rarely are you taking advantage of the full capabilities of a phone, the hardware and Android platform is designed to use as minimal battery as possible and cut corners when it can.
Your user's phone is typically idling and the full potential will be activated for a sparing amount of ms to perform work and catch up on operations.
What is the max performance on Android:
You can search for Android benchmark test's using Unity, keep a very open mind for what each phone puts through as there are more than 12,000 hardware configurations for Android.
Your development phone and those for testing should be expected to be significantly better than your user's phones.

How is it possible that Google Fit app measures number of steps all the time without draining battery?

The Google Fit app, when installed, measures the duration you are walking or running, and also the number of steps all the time. However, strangely, using it does not seem to drain the battery. Other apps like Moves which seems to record number of steps pretty accurately declares that it uses a lot of power because of it constantly monitoring the GPS and the accelerometer.
I imagine several possibilities:
Wakes up the phone every minute or so, then analyses the sensors for a few seconds and then sleeps again. However it seems that the records are pretty accurate to the minute, so the waking up must be frequent.
Actually turns on the accelerometer all the time, and analyzes it only after the accelerometer measurement data buffer is full. However I think the accelerometer has a small buffer to store the latest measurements.
Use GPS to estimate the number of steps instead of actually counting it. However this should not be the case, since it works even indoors.
The app still feels magical. Counting steps the whole time without perceptible battery drain.
Thanks for asking this question!
Battery is one of our top most concerns and we work hard to optimize Google Fit's battery usage and provide a magical experience.
Google Fit uses a mix of sensors(Accelerometer, Step counter, Significant Motion counter), Machine Learning and heuristics to get the data right. Our algorithm is pretty similar to your 1st option plus a little bit of magic.
We periodically poll accelerometer and use Machine Learning and heuristics to correctly identify the activity and duration.
For devices with hardware step counters, we use these step counters to monitor step counts. For older devices, we use the activity detected to predict the right number of steps.
Our algorithms merge these activities, steps and sometimes location to correlate and further increase accuracy.
We do not poll GPS to estimate steps or detect activities.
-- Engineer on Google Fit Team.
On some very recent phones like the Nexus 5 (released in late 2013 with Android 4.4 KitKat), there is a dedicated low-power CPU core that can serve as a pedometer. Since this core consumes very little power and can compute steps by itself without the need for the entire CPU or the GPS, overall battery use is reduced greatly. On the recent iPhones, there is a similar microcontroller called the M7 coprocessor in the iPhone 5s and the M8 in the iPhone 6.
More information here:
https://developer.android.com/about/versions/kitkat.html
http://nexus5.wonderhowto.com/how-to/your-nexus-5-has-real-pedometer-built-in-heres-you-use-0151267/
http://www.androidbeat.com/2014/01/pedometer-nexus5-hardware-count-steps-walked/
having a 3 year old HTC OneX I can say that THERE IS NO DEDICATED HARDWARE, Google Fit just uses standard sensors in a very clever way. I come from Runtastic Pedometer: there is a clear battery consume when in use, it would be impossible to keep it on all the time as it needs the full accelerometer power. On the other side, if you stand still and shake the phone Runtastic will count the shakes, while Google Fit apparently does nothing... Still it works perfectly when you actually walk or run. Magic.
Google fit try to learn use pedo step pattern and try to create its own personal walking patterns and its clusters. This eliminates the need of having huge mathematics calculations on receiving sensor data every time. This makes Google fit more power efficient compared other software pedo apps. Having said that, there is compromise on accuracy factors here. Between power-accuracy trade off, google seems to be more aligned towards power factor here.
At this moment the most power efficient detection happens Samsung flagship & its other high end models. Thanks to Samsung's dedicated hardware chip! No matter how power efficient your software pedo algorithm be but its hard to beat dedicated hardware unit advantage. I also heard about Google's bringing dedicated hardware unit for Ped upcoming nexus devices.
It would seem like the solution would be device dependent, with devices where a co-motion processor or "wimpier" core is available for low power operations, that it would default to this once the buffer is full or similar condition. With devices where a low-power core is not available, it seems like waking the device could trigger a JIT operation that would/should finish by the time the app is called.
While the Nexus 5 does have a dedicated "low-power" pedometer built in. It isn't as "low power" as you might think.
My Nexus 5 battery life was decreased by about 25% when I had Google Fit Activity Detection switched on.
Also, the pedometer doesn't show up in the battery usage stats. Presumably, because it is a hardware thing.
I don't know for the other phones out there, but Google Fit was really draining my battery life on my Nexus 5. Disabling it definitely improved my battery life.

Android thread performance/priority on Galaxy Note 2 when screen is touched/released

I have an OpenGL game for Android. It runs at a good 60fps when the screen is touched. When I release my finger it goes back down to around 30fps. Does the touch event/release raise/lower a thread's priority and if so how can I replicate this to keep it at a constant 60fps. This only seems to be an issue on Galaxy Note 2 so far.
I'll assume you are using onDrawFrame and setRenderMode(RENDERMODE_CONTINUOUSLY).
30 and 60FPS indicates that your implementation of onDrawFrame is called as the device's screen refreshes. Most displays refresh at 60Hz, giving you 60FPS.
It is likely that the Galaxy Note 2 has some power saving feature that limits screen refresh to 30Hz when there are no touches on screen. Check if there's any way to disable this feature.
AFAIK, OpenGL ES does not specify a standard for screen refresh rates, you will need a throttling function to ensure that your game runs/feels the same (i.e. at the same speed) despite differences in FPS.
Yes.
The best way to observe this phenomena is to use systrace with the "freq" tag enabled. You probably need a rooted device, and you definitely need one on which systrace is enabled.
systrace will record changes in the clock frequency for various components. It varies by device, but you can usually get the per-core CPU clocks and GPU memory rate. You will likely see several of them drop significantly at the same time your frame rate drops.
The motivation for doing this is to reduce power requirements and extend battery life. The assumption is that, while your finger is in contact with the screen, you're actively doing something and the device should be as responsive as possible. After a brief period of time, the clocks will slow to a level appropriate for the current workload. The heuristics that determine how long to wait before slowing, and how much to slow down, are tuned for each device.
(This has caused some people to create a thread that just sits and spins on multi-core devices as a way to artificially prop up the CPU clock rate. Not recommended. See also this answer.)
The bottom line is that this isn't a simple matter of adjusting thread priorities. You have to choose between recognizing that the slowdown will happen and adapting to it (by making your game updates independent of frame rate), or figure out some way to fool the device into staying in a higher-power mode when you want smooth animation.
(For anyone who wants to play along at home: build a copy of Grafika and start the "Record GL app" activity. If you drag your finger around the screen all will be well, but if you leave it alone for a few seconds you may start to see the dropped-frame counter rising as the app falls behind. Seen on Nexus 5, Nexus 7 (2013), and others.)

how to measure and improve battery use in iPhone/iPad game (Android also)

My game uses too much battery. I don't know exactly how much it uses as compared to comparable games, but it uses too much. Players complain that it uses a lot, and a number of them note that it makes their device "run hot". I'm just starting to investigate this and wanted to ask some theoretical and practical questions to narrow the search space. This is mainly about the iOS version of my game, but probably many of the same issues affect the Android version. Sorry to ask many sub-questions, but they all seemed so interrelated I thought it best to keep them together.
Side notes: My game doesn't do network access (called out in several places as a big battery drain) and doesn't consume a lot of battery in the background; it's the foreground running that is the problem.
(1) I know there are APIs to read the battery level, so I can do some automated testing. My question here is: About how long (or perhaps: about how much battery drain) do I need to let the thing run to get a reliable reading? For instance, if it runs for 10 minutes is that reliable? If it drains 10% of the battery, is that reliable? Or is it better to run for more like an hour (or, say, see how long it takes the battery to drain 50%)? What I'm asking here is how sensitive/reliable the battery meter is, so I know how long each test run needs to be.
(2) I'm trying to understand what are the likely causes of the high battery use. Below I list some possible factors. Please help me understand which ones are the most likely culprits:
(2a) As with a lot of games, my game needs to draw the full screen on each frame. It runs at about 30 fps. I know that Apple says to "only refresh the screen as much as you need to", but I pretty much need to draw every frame. Actually, I could put some work into only drawing the parts of the screen that had changed, but in my case that will still be most of the screen. And in any case, even if I can localize the drawing to only part of the screen, I'm still making an OpenGL swap buffers call 30 times per second, so does it really matter that I've worked hard to draw a bit less?
(2b) As I draw the screen elements, there is a certain amount of floating point math that goes on (e.g., in computing texture UV coordinates), and some (less) double precision math that goes on. I don't know how expensive these are, battery-wise, as compared to similar integer operations. I could probably cache a lot of these values to not have to repeatedly compute them, if that was a likely win.
(2c) I do a certain amount of texture switching when rendering the scene. I had previously only been worried about this making the game too slow (it doesn't), but now I also wonder whether reducing texture switching would reduce battery use.
(2d) I'm not sure if this would be practical for me but: I have been reading about shaders and OpenCL, and I want to understand if I were to unload some of the CPU processing to the GPU, whether that would likely save battery (in addition to presumably running faster for vector-type operations). Or would it perhaps use even more battery on the GPU than on the CPU?
I realize that I can narrow down which factors are at play by disabling certain parts of the game and doing iterative battery test runs (hence part (1) of the question). It's just that that disabling is not trivial and there are enough potential culprits that I thought I'd ask for general advice first.
Try reading this article:
Android Documents on optimization
What works well for me, is decreasing the use for garbage collection e.g. when programming for a desktop computer, you're (or i'm) used to defining variables inside loops when they are not needed out side of the loop, this causes a massive use of garbage collection (and i'm not talking about primitive vars, but big objects.
try avoiding things like that.
One little tip that really helped me get Battery usage (and warmth of the device!) down was to throttle FPS in my custom OpenGL Engine.
Especially while the scene is static (e.g. a turn-based game or the user tapped pause) throttle down FPS.
Or throttle if the user isn't responsive for more then 10 seconds, like a screensaver on a desktop pc. In the real world users often get distracted while using mobile devices. Don't let your app drain battery while your user figures out what subway-station he's in ;)
Also on the iPhone, sometimes 60FPS is the default, throttling this manually to 30 FPS is barely visible and safes you about half of the gpu cycles (and therefore a lot of battery!).

Scheduling android graphics events

I asked this question over in the Android Developer's user group, last week. Nobody responded, so I thought I'd ask it over here.
Does anyone have any suggestions about how to schedule video events to happen at an exact clock time? I've been thinking about an application that would require two adjacent phones to display the same thing at exactly the same time. I'm wondering what that granularity of "exactly" is going to be.
I've done some testing on a couple of devices and it seems that the delay between an invalidate and the subsequent redraw can be as much 16ms. Perhaps I can do better with OpenGL?
Ideas? Anyone?
OpenGL itself is capable of very high framerates (unless I am mistaken). What I can tell you is that plenty of games have been written to run and maintain 30 frames per second. That's one frame every 3.33ms. At that speed, the change should be imperceptible to the human eye, or so I've heard (the estimate limit is 5ms).
However, there is a major difference between what OpenGL can do, and what the device running OpenGL can do. Again, Unless I am mistaken, you should be able to instruct OpenGL to run at 200 frames per second. The caveat is that if the machine you are running the animation on can't handle that framerate, it will either frame-skip or lag, and in either case will hog the processor and GPU like no other.
Again, as I don't know the specifics, I can only guess, but I would think that this is less of an issue with OpenGL vs the other leading brand, and more of an issue of the devices you are trying to sync. With the right code, a proven framework, two powerful machines, and high-speed data transfer capability (read: LAN at the least), there is no reason why you shouldn't be able to sync up the video. If any of these things are not the case, all bets are off.
-Cody

Categories

Resources