I wrote a conversion from YUV_420_888 to Bitmap, considering the following logic (as I understand it):
To summarize the approach: the kernel’s coordinates x and y are congruent both with the x and y of the non-padded part of the Y-Plane (2d-allocation) and the x and y of the output-Bitmap. The U- and V-Planes, however, have a different structure than the Y-Plane, because they use 1 byte for coverage of 4 pixels, and, in addition, may have a PixelStride that is more than one, in addition they might also have a padding that can be different from that of the Y-Plane. Therefore, in order to access the U’s and V’s efficiently by the kernel I put them into 1-d allocations and created an index “uvIndex” that gives the position of the corresponding U- and V within that 1-d allocation, for given (x,y) coordinates in the (non-padded) Y-plane (and, so, the output Bitmap).
In order to keep the rs-Kernel lean, I excluded the padding area in the yPlane by capping the x-range via LaunchOptions (this reflects the RowStride of the y-plane which thus can be ignored WITHIN the kernel). So we just need to consider the uvPixelStride and uvRowStride within the uvIndex, i.e. the index used in order to access to the u- and v-values.
This is my code:
Renderscript Kernel, named yuv420888.rs
#pragma version(1)
#pragma rs java_package_name(com.xxxyyy.testcamera2);
#pragma rs_fp_relaxed
int32_t width;
int32_t height;
uint picWidth, uvPixelStride, uvRowStride ;
rs_allocation ypsIn,uIn,vIn;
// The LaunchOptions ensure that the Kernel does not enter the padding zone of Y, so yRowStride can be ignored WITHIN the Kernel.
uchar4 __attribute__((kernel)) doConvert(uint32_t x, uint32_t y) {
// index for accessing the uIn's and vIn's
uint uvIndex= uvPixelStride * (x/2) + uvRowStride*(y/2);
// get the y,u,v values
uchar yps= rsGetElementAt_uchar(ypsIn, x, y);
uchar u= rsGetElementAt_uchar(uIn, uvIndex);
uchar v= rsGetElementAt_uchar(vIn, uvIndex);
// calc argb
int4 argb;
argb.r = yps + v * 1436 / 1024 - 179;
argb.g = yps -u * 46549 / 131072 + 44 -v * 93604 / 131072 + 91;
argb.b = yps +u * 1814 / 1024 - 227;
argb.a = 255;
uchar4 out = convert_uchar4(clamp(argb, 0, 255));
return out;
}
Java side:
private Bitmap YUV_420_888_toRGB(Image image, int width, int height){
// Get the three image planes
Image.Plane[] planes = image.getPlanes();
ByteBuffer buffer = planes[0].getBuffer();
byte[] y = new byte[buffer.remaining()];
buffer.get(y);
buffer = planes[1].getBuffer();
byte[] u = new byte[buffer.remaining()];
buffer.get(u);
buffer = planes[2].getBuffer();
byte[] v = new byte[buffer.remaining()];
buffer.get(v);
// get the relevant RowStrides and PixelStrides
// (we know from documentation that PixelStride is 1 for y)
int yRowStride= planes[0].getRowStride();
int uvRowStride= planes[1].getRowStride(); // we know from documentation that RowStride is the same for u and v.
int uvPixelStride= planes[1].getPixelStride(); // we know from documentation that PixelStride is the same for u and v.
// rs creation just for demo. Create rs just once in onCreate and use it again.
RenderScript rs = RenderScript.create(this);
//RenderScript rs = MainActivity.rs;
ScriptC_yuv420888 mYuv420=new ScriptC_yuv420888 (rs);
// Y,U,V are defined as global allocations, the out-Allocation is the Bitmap.
// Note also that uAlloc and vAlloc are 1-dimensional while yAlloc is 2-dimensional.
Type.Builder typeUcharY = new Type.Builder(rs, Element.U8(rs));
//using safe height
typeUcharY.setX(yRowStride).setY(y.length / yRowStride);
Allocation yAlloc = Allocation.createTyped(rs, typeUcharY.create());
yAlloc.copyFrom(y);
mYuv420.set_ypsIn(yAlloc);
Type.Builder typeUcharUV = new Type.Builder(rs, Element.U8(rs));
// note that the size of the u's and v's are as follows:
// ( (width/2)*PixelStride + padding ) * (height/2)
// = (RowStride ) * (height/2)
// but I noted that on the S7 it is 1 less...
typeUcharUV.setX(u.length);
Allocation uAlloc = Allocation.createTyped(rs, typeUcharUV.create());
uAlloc.copyFrom(u);
mYuv420.set_uIn(uAlloc);
Allocation vAlloc = Allocation.createTyped(rs, typeUcharUV.create());
vAlloc.copyFrom(v);
mYuv420.set_vIn(vAlloc);
// handover parameters
mYuv420.set_picWidth(width);
mYuv420.set_uvRowStride (uvRowStride);
mYuv420.set_uvPixelStride (uvPixelStride);
Bitmap outBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
Allocation outAlloc = Allocation.createFromBitmap(rs, outBitmap, Allocation.MipmapControl.MIPMAP_NONE, Allocation.USAGE_SCRIPT);
Script.LaunchOptions lo = new Script.LaunchOptions();
lo.setX(0, width); // by this we ignore the y’s padding zone, i.e. the right side of x between width and yRowStride
//using safe height
lo.setY(0, y.length / yRowStride);
mYuv420.forEach_doConvert(outAlloc,lo);
outAlloc.copyTo(outBitmap);
return outBitmap;
}
Testing on Nexus 7 (API 22) this returns nice color Bitmaps. This device, however, has trivial pixelstrides (=1) and no padding (i.e. rowstride=width). Testing on the brandnew Samsung S7 (API 23) I get pictures whose colors are not correct - except of the green ones. But the Picture does not show a general bias towards green, it just seems that non-green colors are not reproduced correctly. Note, that the S7 applies an u/v pixelstride of 2, and no padding.
Since the most crucial code line is within the rs-code the Access of the u/v planes uint uvIndex= (...) I think, there could be the problem, probably with incorrect consideration of pixelstrides here. Does anyone see the solution? Thanks.
UPDATE: I checked everything, and I am pretty sure that the code regarding the access of y,u,v is correct. So the problem must be with the u and v values themselves. Non green colors have a purple tilt, and looking at the u,v values they seem to be in a rather narrow range of about 110-150. Is it really possible that we need to cope with device specific YUV -> RBG conversions...?! Did I miss anything?
UPDATE 2: have corrected code, it works now, thanks to Eddy's Feedback.
Look at
floor((float) uvPixelStride*(x)/2)
which calculates your U,V row offset (uv_row_offset) from the Y x-coordinate.
if uvPixelStride = 2, then as x increases:
x = 0, uv_row_offset = 0
x = 1, uv_row_offset = 1
x = 2, uv_row_offset = 2
x = 3, uv_row_offset = 3
and this is incorrect. There's no valid U/V pixel value at uv_row_offset = 1 or 3, since uvPixelStride = 2.
You want
uvPixelStride * floor(x/2)
(assuming you don't trust yourself to remember the critical round-down behavior of integer divide, if you do then):
uvPixelStride * (x/2)
should be enough
With that, your mapping becomes:
x = 0, uv_row_offset = 0
x = 1, uv_row_offset = 0
x = 2, uv_row_offset = 2
x = 3, uv_row_offset = 2
See if that fixes the color errors. In practice, the incorrect addressing here would mean every other color sample would be from the wrong color plane, since it's likely that the underlying YUV data is semiplanar (so the U plane starts at V plane + 1 byte, with the two planes interleaved)
For people who encounter error
android.support.v8.renderscript.RSIllegalArgumentException: Array too small for allocation type
use buffer.capacity() instead of buffer.remaining()
and if you already made some operations on the image, you'll need to call rewind() method on the buffer.
Furthermore for anyone else getting
android.support.v8.renderscript.RSIllegalArgumentException: Array too
small for allocation type
I fixed it by changing yAlloc.copyFrom(y); to yAlloc.copy1DRangeFrom(0, y.length, y);
Posting full solution to convert YUV->BGR (can be adopted for other formats too) and also rotate image to upright using renderscript. Allocation is used as input and byte array is used as output. It was tested on Android 8+ including Samsung devices too.
Java
/**
* Renderscript-based process to convert YUV_420_888 to BGR_888 and rotation to upright.
*/
public class ImageProcessor {
protected final String TAG = this.getClass().getSimpleName();
private Allocation mInputAllocation;
private Allocation mOutAllocLand;
private Allocation mOutAllocPort;
private Handler mProcessingHandler;
private ScriptC_yuv_bgr mConvertScript;
private byte[] frameBGR;
public ProcessingTask mTask;
private ImageListener listener;
private Supplier<Integer> rotation;
public ImageProcessor(RenderScript rs, Size dimensions, ImageListener listener, Supplier<Integer> rotation) {
this.listener = listener;
this.rotation = rotation;
int w = dimensions.getWidth();
int h = dimensions.getHeight();
Type.Builder yuvTypeBuilder = new Type.Builder(rs, Element.YUV(rs));
yuvTypeBuilder.setX(w);
yuvTypeBuilder.setY(h);
yuvTypeBuilder.setYuvFormat(ImageFormat.YUV_420_888);
mInputAllocation = Allocation.createTyped(rs, yuvTypeBuilder.create(),
Allocation.USAGE_IO_INPUT | Allocation.USAGE_SCRIPT);
//keep 2 allocations to handle different image rotations
mOutAllocLand = createOutBGRAlloc(rs, w, h);
mOutAllocPort = createOutBGRAlloc(rs, h, w);
frameBGR = new byte[w*h*3];
HandlerThread processingThread = new HandlerThread(this.getClass().getSimpleName());
processingThread.start();
mProcessingHandler = new Handler(processingThread.getLooper());
mConvertScript = new ScriptC_yuv_bgr(rs);
mConvertScript.set_inWidth(w);
mConvertScript.set_inHeight(h);
mTask = new ProcessingTask(mInputAllocation);
}
private Allocation createOutBGRAlloc(RenderScript rs, int width, int height) {
//Stored as Vec4, it's impossible to store as Vec3, buffer size will be for Vec4 anyway
//using RGB_888 as alternative for BGR_888, can be just U8_3 type
Type.Builder rgbTypeBuilderPort = new Type.Builder(rs, Element.RGB_888(rs));
rgbTypeBuilderPort.setX(width);
rgbTypeBuilderPort.setY(height);
Allocation allocation = Allocation.createTyped(
rs, rgbTypeBuilderPort.create(), Allocation.USAGE_SCRIPT
);
//Use auto-padding to be able to copy to x*h*3 bytes array
allocation.setAutoPadding(true);
return allocation;
}
public Surface getInputSurface() {
return mInputAllocation.getSurface();
}
/**
* Simple class to keep track of incoming frame count,
* and to process the newest one in the processing thread
*/
class ProcessingTask implements Runnable, Allocation.OnBufferAvailableListener {
private int mPendingFrames = 0;
private Allocation mInputAllocation;
public ProcessingTask(Allocation input) {
mInputAllocation = input;
mInputAllocation.setOnBufferAvailableListener(this);
}
#Override
public void onBufferAvailable(Allocation a) {
synchronized(this) {
mPendingFrames++;
mProcessingHandler.post(this);
}
}
#Override
public void run() {
// Find out how many frames have arrived
int pendingFrames;
synchronized(this) {
pendingFrames = mPendingFrames;
mPendingFrames = 0;
// Discard extra messages in case processing is slower than frame rate
mProcessingHandler.removeCallbacks(this);
}
// Get to newest input
for (int i = 0; i < pendingFrames; i++) {
mInputAllocation.ioReceive();
}
int rot = rotation.get();
mConvertScript.set_currentYUVFrame(mInputAllocation);
mConvertScript.set_rotation(rot);
Allocation allocOut = rot==90 || rot== 270 ? mOutAllocPort : mOutAllocLand;
// Run processing
// ain allocation isn't really used, global frame param is used to get data from
mConvertScript.forEach_yuv_bgr(allocOut);
//Save to byte array, BGR 24bit
allocOut.copyTo(frameBGR);
int w = allocOut.getType().getX();
int h = allocOut.getType().getY();
if (listener != null) {
listener.onImageAvailable(frameBGR, w, h);
}
}
}
public interface ImageListener {
/**
* Called when there is available image, image is in upright position.
*
* #param bgr BGR 24bit bytes
* #param width image width
* #param height image height
*/
void onImageAvailable(byte[] bgr, int width, int height);
}
}
RS
#pragma version(1)
#pragma rs java_package_name(com.affectiva.camera)
#pragma rs_fp_relaxed
//Script convers YUV to BGR(uchar3)
//current YUV frame to read pixels from
rs_allocation currentYUVFrame;
//input image rotation: 0,90,180,270 clockwise
uint32_t rotation;
uint32_t inWidth;
uint32_t inHeight;
//method returns uchar3 BGR which will be set to x,y in output allocation
uchar3 __attribute__((kernel)) yuv_bgr(uint32_t x, uint32_t y) {
// Read in pixel values from latest frame - YUV color space
uchar3 inPixel;
uint32_t xRot = x;
uint32_t yRot = y;
//Do not rotate if 0
if (rotation==90) {
//rotate 270 clockwise
xRot = y;
yRot = inHeight - 1 - x;
} else if (rotation==180) {
xRot = inWidth - 1 - x;
yRot = inHeight - 1 - y;
} else if (rotation==270) {
//rotate 90 clockwise
xRot = inWidth - 1 - y;
yRot = x;
}
inPixel.r = rsGetElementAtYuv_uchar_Y(currentYUVFrame, xRot, yRot);
inPixel.g = rsGetElementAtYuv_uchar_U(currentYUVFrame, xRot, yRot);
inPixel.b = rsGetElementAtYuv_uchar_V(currentYUVFrame, xRot, yRot);
// Convert YUV to RGB, JFIF transform with fixed-point math
// R = Y + 1.402 * (V - 128)
// G = Y - 0.34414 * (U - 128) - 0.71414 * (V - 128)
// B = Y + 1.772 * (U - 128)
int3 bgr;
//get red pixel and assing to b
bgr.b = inPixel.r +
inPixel.b * 1436 / 1024 - 179;
bgr.g = inPixel.r -
inPixel.g * 46549 / 131072 + 44 -
inPixel.b * 93604 / 131072 + 91;
//get blue pixel and assign to red
bgr.r = inPixel.r +
inPixel.g * 1814 / 1024 - 227;
// Write out
return convert_uchar3(clamp(bgr, 0, 255));
}
On a Samsung Galaxy Tab 5 (Tablet), android version 5.1.1 (22), with alleged YUV_420_888 format, the following renderscript math works well and produces correct colors:
uchar yValue = rsGetElementAt_uchar(gCurrentFrame, x + y * yRowStride);
uchar vValue = rsGetElementAt_uchar(gCurrentFrame, ( (x/2) + (y/4) * yRowStride ) + (xSize * ySize) );
uchar uValue = rsGetElementAt_uchar(gCurrentFrame, ( (x/2) + (y/4) * yRowStride ) + (xSize * ySize) + (xSize * ySize) / 4);
I do not understand why the horizontal value (i.e., y) is scaled by a factor of four instead of two, but it works well. I also needed to avoid use of rsGetElementAtYuv_uchar_Y|U|V. I believe the associated allocation stride value is set to zero instead of something proper. Use of rsGetElementAt_uchar() is a reasonable work-around.
On a Samsung Galaxy S5 (Smart Phone), android version 5.0 (21), with alleged YUV_420_888 format, I cannot recover the u and v values, they come through as all zeros. This results in a green looking image. Luminous is OK, but image is vertically flipped.
This code requires the use of the RenderScript compatibility library (android.support.v8.renderscript.*).
In order to get the compatibility library to work with Android API 23, I updated to gradle-plugin 2.1.0 and Build-Tools 23.0.3 as per Miao Wang's answer at How to create Renderscript scripts on Android Studio, and make them run?
If you follow his answer and get an error "Gradle version 2.10 is required" appears, do NOT change
classpath 'com.android.tools.build:gradle:2.1.0'
Instead, update the distributionUrl field of the Project\gradle\wrapper\gradle-wrapper.properties file to
distributionUrl=https\://services.gradle.org/distributions/gradle-2.10-all.zip
and change File > Settings > Builds,Execution,Deployment > Build Tools > Gradle >Gradle to Use default gradle wrapper as per "Gradle Version 2.10 is required." Error.
Re: RSIllegalArgumentException
In my case this was the case that buffer.remaining() was not multiple of stride:
The length of last line was less than stride (i.e. only up to where actual data was.)
An FYI in case someone else gets this as I was also getting "android.support.v8.renderscript.RSIllegalArgumentException: Array too small for allocation type" when trying out the code. In my case it turns out that the when allocating the buffer for Y i had to rewind the buffer because it was being left at the wrong end and wasn't copying the data. By doing buffer.rewind(); before allocation the new bytes array makes it work fine now.
I'm trying to get images from HD Live Stream. Getting OMX Decoder YUV Streams and converting them into JPG. JPEG is completely disturbed. Tried some suggestions from group but not working.
My resolution is 320x240.
i will get buffer length is (386 * 256 * 1.5) for configured 320 * 240 resolution. I'm not getting how to get this new width and height information.
JPG conversion code i have in Java and using OMXCodec is in Native. Please help me.
final int frameSize = width * height;
final int qFrameSize = frameSize/4;
int padding = 0;/*(width*height + 2047) & ~2047;
if ((width % 32) != 0) {
padding = (width*height) % 1024;
} else {
padding = (width*height) % 2048;
}
System.arraycopy(input, 0, output, 0, frameSize); // Y
for (int i = 0; i < qFrameSize; i++) {
output[frameSize + i*2 + padding] = input[frameSize + i + qFrameSize ]; // Cb (U)
output[frameSize + i*2 + 1 + padding] = input[frameSize + i ]; // Cr (V)
}
return ;
}
thank you,
Raghu
The output of QCom video decoder is usually a specific custom color format which is typically known as tiled format. Please refer to these questions which have more inputs on how to convert the data to a more cleaner frame
QOMX_COLOR_FormatYUV420PackedSemiPlanar64x32Tile2m8ka converter
QOMX_COLOR_FormatYUV420PackedSemiPlanar64x32Tile2m8ka color format
My android app uses an external lib that makes some image treatments. The final output of the treatment chain is a monochrome bitmap but saved has a color bitmap (32bpp).
The image has to be uploaded to a cloud blob, so for bandwidth concerns, i'd like to convert it to 1bpp G4 compression TIFF. I successfully integrated libTIFF in my app via JNI and now i'm writing the conversion routine in C. I'm a little stuck here.
I managed to produce a 32 BPP TIFF, but impossible to reduce to 1bpp, the output image is always unreadable. Did someone succeded to do similar task ?
More speciffically :
What should be the value of SAMPLE_PER_PIXEL and BITS_PER_SAMPLE
parameters ?
How to determine the strip size ?
How to fill each strip ? (i.e. : How to convert 32bpp pixel lines to 1 bpp pixels strips ?)
Many thanks !
UPDATE : The code produced with the precious help of Mohit Jain
int ConvertMonochrome32BppBitmapTo1BppTiff(char* bitmap, int height, int width, int resx, int resy, char const *tifffilename)
{
TIFF *tiff;
if ((tiff = TIFFOpen(tifffilename, "w")) == NULL)
{
return TC_ERROR_OPEN_FAILED;
}
// TIFF Settings
TIFFSetField(tiff, TIFFTAG_RESOLUTIONUNIT, RESUNIT_INCH);
TIFFSetField(tiff, TIFFTAG_XRESOLUTION, resx);
TIFFSetField(tiff, TIFFTAG_YRESOLUTION, resy);
TIFFSetField(tiff, TIFFTAG_COMPRESSION, COMPRESSION_CCITTFAX4); //Group4 compression
TIFFSetField(tiff, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField(tiff, TIFFTAG_IMAGELENGTH, height);
TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, 1);
TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, 1);
TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 1);
TIFFSetField(tiff, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);
TIFFSetField(tiff, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISWHITE);
tsize_t tbufsize = (width + 7) / 8; //Tiff ScanLine buffer size for 1bpp pixel row
//Now writing image to the file one row by one
int x, y;
for (y = 0; y < height; y++)
{
char *buffer = malloc(tbufsize);
memset(buffer, 0, tbufsize);
for (x = 0; x < width; x++)
{
//offset of the 1st byte of each pixel in the input image (is enough to determine is black or white in 32 bpp monochrome bitmap)
uint32 bmpoffset = ((y * width) + x) * 4;
if (bitmap[bmpoffset] == 0) //Black pixel ?
{
uint32 tiffoffset = x / 8;
*(buffer + tiffoffset) |= (0b10000000 >> (x % 8));
}
}
if (TIFFWriteScanline(tiff, buffer, y, 0) != 1)
{
return TC_ERROR_WRITING_FAILED;
}
if (buffer)
{
free(buffer);
buffer = NULL;
}
}
TIFFClose(tiff);
tiff = NULL;
return TC_SUCCESSFULL;
}
To convert 32 bpp to 1 bpp, extract RGB and convert it into Y (luminance) and use some threshold to convert to 1 bpp.
Number of samples and bits per pixel should be 1.
I'm trying to get the picture from a surfaceView where I have the camera view running,
I've already implemented onPreviewFrame, and it's called correctly as the debug shows me.
The problem I'm facing now, it's since the byte[] data I receive in the method, it's in YUV space color (NV21), I'm trying to convert it to grayscale to generate a Bitmap and then storing it into a file.
The conversion process that I'm following it's:
public Bitmap convertYuvGrayScaleRGB(byte[] yuv, int width, int height) {
int[] pixels = new int[width * height];
for (int i = 0; i < height*width; i++) {
int grey = yuv[i] & 0xff;
pixels[i] = 0xFF000000 | (grey * 0x00010101);
}
return Bitmap.createBitmap(pixels, width, height, Bitmap.Config.ARGB_8888);
}
The importing procedure for storing it to a file, it's:
Bitmap bitmap = convertYuvGrayScaleRGB(data,widht,heigth);
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
bitmap.compress(Bitmap.CompressFormat.PNG, 50, bytes);
File f = new File(Environment.getExternalStorageDirectory()
+ File.separator + "test.jpg");
Log.d("Camera", "File: " + f.getAbsolutePath());
try {
f.createNewFile();
FileOutputStream fo = new FileOutputStream(f);
fo.write(bytes.toByteArray());
fo.close();
bitmap.recycle();
bitmap = null;
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
Altough, the result I've got it's the following:
I can't find any obvious mistake in your code, but i've already met this kind of skewed images before. When this happened to me, it was due to:
At some point in the code, the image width and height are swapped,
Or the original image you're trying to convert has padding, in which case you will need a stride in addition of the width and height.
Hope this helps!
Probably the Width of the image you are converting is not even. in that case
it is padded in memory.
Let me have a look at the docs...
It seems more complicated than this. if you want your code to work as it is now, you will have to have the width
a multiple of 16.
from the docs:
public static final int YV12
Added in API level 9 Android YUV format.
This format is exposed to software decoders and applications.
YV12 is a 4:2:0 YCrCb planar format comprised of a WxH Y plane
followed by (W/2) x (H/2) Cr and Cb planes.
This format assumes
an even width an even height a horizontal stride multiple of 16 pixels
a vertical stride equal to the height y_size = stride * height
c_stride = ALIGN(stride/2, 16) c_size = c_stride * height/2 size =
y_size + c_size * 2 cr_offset = y_size cb_offset = y_size + c_size
I just had this problem with the S3. My problem was that I used the wrong dimensions for the preview. I assumed the camera was 16:9 when it was actually 4:3.
Use Camera.getParameters().getPreviewSize() to see what the output is in.
I made this:
int frameSize = width * height;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
ret[frameSize + (i >> 1) * width + (j & ~1) + 1] = 127; //U
ret[frameSize + (i >> 1) * width + (j & ~1) + 0] = 127; //V
}
}
So simple but it works really good and fast ;)
What is the best value for buffer size when implementing a guitar tuner using FFT? Am getting an output, but it seems that the value displayed is not much accurate as I expected. I think it's an issue with the buffer size I allocated. I'm using 8000 as the buffer size. Are there any other suggestions to retrieve more efficient result?
You can kinda wiggle the results around a bit. It's been a while since I've done FFT work, but if I recall, with a buffer of 8000, the Nth bucket would be (8000 / 2) / N Hz (is that right? It's been a long time). So the 79th through 81st buckets are 50.63, 50, and 49.38 Hz.
You can then do a FFT with a slightly different number of buckets. So if you dropped down to 6000 buckets, the 59th through 61st buckets would be 50.84, 50, and 49.18 Hz.
Now you've got an algorithm that you can use to home in on the specific frequency. I think it's O((log M) * (N log N)) where N is roughly the number of buckets you use each time, and M is the precision.
Update: Sample Stretching
public byte[] stretch(byte[] input, int newLength) {
byte[] result = new byte[newLength];
result[0] = input[0];
for (int i = 1; i < newLength; i++) {
float t = i * input.length / newLength;
int j = (int) t;
float d = t - j;
result[i] = (byte) (input[j - 1] * d + input[j] * (1 - d))
}
return result;
}
You might have to fix some of the casting to make sure you get the right numbers, but that looks about right.
i = index in result[]
j = index in input[] (rounded up)
d = percentage of input[j - 1] to use
1 - d = percentage of input[j] to use