I'm working on a BluetoothChat sample based app, one device send another device parameters and the second send the data. I think that problem is in Connected thread run() method which i must edit because the original version receive data in not correct order . If I close program running on one device the second device is still connected to disconnected device.
public void run() {
int bytes;
int availableBytes=0;
while (true) {
try {
availableBytes=mmInStream.available();
byte[] buffer = new byte[availableBytes];
// Read from the InputStream
bytes = mmInStream.read(buffer);
if (bytes>0){
mHandler.obtainMessage(Constants.MESSAGE_READ, bytes, -1, buffer)
.sendToTarget();
}
// Send the obtained bytes to the UI Activity
} catch (IOException e) {
connectionLost();
// Start the service over to restart listening mode
BluetoothClientService.this.start();
break;
}
}
}
Related
I am creating an app for an arduino thermometer, to connect via Bluetooth.
However I am finding it very difficult to implement Bluetooth in Android studio I looked at the example here, I am having errors implementing it.
It's line 65 in the "MyBluetoothService" class that is creating the error.
The error is: Cannot resolve method "obtainMessage(int, int, int, byte[])
The link to the full code
And the faulty code here:
public void run() {
mmBuffer = new byte[1024];
int numBytes; // bytes returned from read()
// Keep listening to the InputStream until an exception occurs.
while (true) {
try {
// Read from the InputStream.
numBytes = mmInStream.read(mmBuffer);
// Send the obtained bytes to the UI activity.
Message readMsg = mHandler.obtainMessage(
MessageConstants.MESSAGE_READ, numBytes, -1,
mmBuffer);
readMsg.sendToTarget();
} catch (IOException e) {
Log.d(TAG, "Input stream was disconnected", e);
break;
}
}
}
I'm working on an application which should be quite the same as Bluehood, an application which is on the google market .
So now I'm working on Bluetooth . The fact is, I want to transfer strings (JSON) between two devices . I've seen lots of posts on stackoverflow and some examples on the internet but it's not so clear for me .
I know that I've to use createInsecureRfcommSocketToServiceRecord for sending informations and listenUsingInsecureRfcommWithServiceRecord for receiving them , but I'm searching some simple tutorial to explain how it works and how to transfer data between two devices .
Thank in advance for your explanations...
It's hard to know if I am answering this effectively, as you say you have searched the web and I find one of the most useful tutorials at android com on Bluetooth. I have supplied parts of the code, not the full thread classes, but the bones to give you an idea of how temp sockets are used until sockets are found and made final, for the duration of the connection, and how threads manage each stage of the connection process.
listenUsingRfcommWithServiceRecord(NAME, MY_UUID); is used to create a server socket. It listens for a connection. It acts like a server. This is on the device that is acting as a server or listening for incoming connections.
This is done is a separate thread.
public AcceptThread() {
BluetoothServerSocket tmp = null;
// Create a new listening server socket
try {
tmp = mAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);
} catch (IOException e) {
}
mmServerSocket = tmp;
}
public void run() {
BluetoothSocket socket = null;
// Listen to the server socket if we're not connected
while (mState != STATE_CONNECTED) {
try {
// This is a blocking call and will only return on a
// successful connection or an exception
socket = mmServerSocket.accept();
} catch (IOException e) {
break;
}
// If a connection was accepted
if (socket != null) {
synchronized (BluetoothConnection.this) {
switch (mState) {
case STATE_LISTEN:
case STATE_CONNECTING:
// Situation normal. Start the connected thread.
connected(socket, socket.getRemoteDevice());
break;
case STATE_NONE:
case STATE_CONNECTED:
// Either not ready or already connected. Terminate new socket.
try {
socket.close();
} catch (IOException e) {
}
break;
}
}
}
}
}
There is a separate thread to act as a client, seeking a connection. It goes looking for a connection. This is on the device that seeks the connection with the server device. (These can be interchangeable).
public ConnectThread(BluetoothDevice device) {
mmDevice = device;
BluetoothSocket tmp = null;
// Get a BluetoothSocket for a connection with the
// given BluetoothDevice
try {
tmp = device.createRfcommSocketToServiceRecord(MY_UUID);
} catch (IOException e) {
}
mmSocket = tmp;
}
public void run() {
// Always cancel discovery because it will slow down a connection
mAdapter.cancelDiscovery();
// Make a connection to the BluetoothSocket
try {
// This is a blocking call and will only return on a
// successful connection or an exception
mmSocket.connect();
} catch (IOException e) {
// Close the socket
try {
mmSocket.close();
} catch (IOException e2) {
}
connectionFailed();
return;
}
You then need a thread to manage the actual connection. When the client meets the server. Also in a separate thread.
public ConnectedThread(BluetoothSocket socket) {
mmSocket = socket;
InputStream tmpIn = null;
OutputStream tmpOut = null;
// Get the BluetoothSocket input and output streams
try {
tmpIn = socket.getInputStream();
tmpOut = socket.getOutputStream();
} catch (IOException e) {
}
mmInStream = tmpIn;
mmOutStream = tmpOut;
}
public void run() {
byte[] buffer = new byte[1024];
int bytes;
// Keep listening to the InputStream while connected
while (true) {
try {
// Read from the InputStream
bytes = mmInStream.read(buffer);
// Send the obtained bytes to the UI Activity
mHandler.obtainMessage(MESSAGE_READ, bytes, -1, buffer).sendToTarget();
} catch (IOException e) {
connectionLost();
// Start the service over to restart listening mode
BluetoothConnection.this.start();
break;
}
}
}
Within this thread you also have your code to manage writing data through this connection.
There are samples supplied through android.com.
I also found this tutorial good, as a simple background into bluetooth discovery and connection, although it doesn't give you all you need to read and write data.
In terms of reading and writing the data, the following snippet is an example of a way to handle reading data and parsing it to something usable. Calling the handler from within the connection thread. In this case I am appending the data to a textView, but you can do whatever you want with it, it shows how to put it into a String. (which is what you are looking for).
private final Handler mHandler = new Handler() {
#Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MESSAGE_READ:
byte[] readBuf = (byte[]) msg.obj;
// construct a string from the valid bytes in the buffer
String readMessage = new String(readBuf, 0, msg.arg1);
textView1.append("\nMessage " + messageCount + ": " + readMessage);
....
Likewise there is some code to write messages - this is in the connected thread class. However, I grab this information using an OnClick event with the button to send. Grab the text from the EditText and send it to a function to parse the String to bytes.
where message is a String and mChatService is calling the write method from the Connected thread.
Converting the string to a byte array, so it can be sent.
// Get the message bytes and tell the BTManager to write
byte[] send = message.getBytes();
mChatService.write(send);
Write method from connected thread:
public void write(byte[] buffer) {
try {
mmOutStream.write(buffer);
// Share the sent message back to the UI Activity
mHandler.obtainMessage(MESSAGE_WRITE, -1, -1, buffer).sendToTarget();
} catch (IOException e) {
}
}
It is worth noting that the states of the devices must be monitored (you can have a look a the tutorial for that).
It is also important to keep the background threads away from the UI. So that is where the skill comes in (and a handler) to transfer data to and from the UI to the socket connection.
I am trying to control/operate a motor from an android phone in "as close as possible" realtime using the Android SPP Bluetooth socket interface. The motor ought to run in a so called 'dead man' operation mode. So the motor will only turn if a button on the android APP is touched and ought to stop immediately if the touch is released.
I implemented this by continuously sending 'keep turning' telegrams of 20 Bytes about every 20ms to keep the motor turning and to have the motor stop immediately as soon as no more telegrams are received or if a STOP telegram is received.
This seem to work acceptable well on some phone but others continue sending 'keep turning' telegrams even after the MotionEvent.ACTION_UP event has been processed and no more data are being send.
I assume that this is caused by some internal buffers that cache the transmit data and continue sending until the buffer is empty.
Simple questions:
Is there a way to purge the BT stream transmit buffer to stop all data transfer immediately?
Or can I get the fill level of the transmit buffer in which case I would not put anything more than about 2 telegrams into it?
Or is there a way to specify the buffer size when opening the stream?
Searching the net, I was not able to find anything that talks about BT stream buffer size of buffer management.
And Yes, I have implemented read and write functions as threads and I do not have any problems in reading all telegrams, and I do not need to deliver telegrams in real time but I should be able to stop sending 'keep turning' telegrams within about 50 to 100ms.
Any hints are very welcome.
I am sorry that I did not add the code, I thought it may not be necessary as it is straight forward as:
#Override
public boolean onTouch(final View v,MotionEvent event) {
int eventAction = event.getAction();
switch (eventAction) {
case MotionEvent.ACTION_DOWN:
if (v == btnUp || v == btnDown) {
// Start a thread that sends the goUP or DOWN command every 10 ms until
// btnUp released
tvCounter.setText("----");
action_touched = true;
new Thread(new Runnable() {
#Override
public void run() {
int counter = 1;
// Disable heart beat
ServiceRequest.send(EnRequest.REQ_SET_HEARTBEAT,0);
// Send GoUp command plus a wrapping counter byte every nn ms
// until the button is released
while (action_touched) {
try {
setDeadmanMove(v==btnUp,counter);
Thread.sleep(20);
++counter;
}
catch (InterruptedException ex) {
action_touched = false;
}
catch (Exception ex) {
action_touched = false;
}
}
// Send a STOP command
setDeadmanStop();
// Enable heart beat again
ServiceRequest.send(EnRequest.REQ_SET_HEARTBEAT,1);
// We are done
}
}).start();
}
break;
case MotionEvent.ACTION_UP:
// Stop Thread
action_touched = false;
break;
}
return true;
}
The snipped below is part of the communication class that manages the Bluetooth serial communication.
public void btWrite(DeviceRecord message) {
if (runBTreceiver) {
if (message.isValidRecord()) {
try {
lock.lock();
++lockCounter;
mmBufferedOut.write(message.getFullRecord());
mmBufferedOut.flush();
}
catch (IOException e) {
if (GlobalData.isDebugger) Log.i(TAG, "Failed sending " + message + " " + e.getMessage());
ServiceResponse.send(EnEvent.EVT_BT_RECEIVER_ERROR, "Error data send: " + e.getMessage());
resetConnection();
runBTreceiver=false;
}
finally {
--lockCounter;
lock.unlock();
}
}
}
}
The code snipped that allocates and opens the Bluetooth connection
try {
// Set up a pointer to the remote node using it's address.
BluetoothDevice device = myBluetoothAdapter.getRemoteDevice(myBluetoothMacId);
if (device != null)
{
// Two things are needed to make a connection:
// A MAC address, which we got above.
// A Service ID or UUID. In this case we are using the
// UUID for SPP.
try {
myBluetoothSocket = device.createRfcommSocketToServiceRecord(GlobalData.MY_UUID);
}
catch (IOException e) {
sendEventStatus(EnEvent.EVT_BTADAPTER_FAIL,
String.format(GlobalData.rString(R.string.srv_failcrt),BTERROR_CREATE,e.getMessage()));
}
// Establish the connection. This will block until it connects or
// timeout?
try {
if (! myBluetoothSocket.isConnected()) {
myBluetoothSocket.connect();
}
}
catch (IOException e) {
try {
Log.e("","trying fallback...");
myBluetoothSocket =(BluetoothSocket) device.getClass().getMethod("createRfcommSocket", new Class[] {int.class}).invoke(device,1);
myBluetoothSocket.connect();
}
catch (IOException e2) {
sendEventStatus(EnEvent.EVT_BTADAPTER_FAIL,e2.getMessage());
}
}
}
else {
sendEventStatus(EnEvent.EVT_BTADAPTER_FAIL,
String.format(GlobalData.rString(R.string.srv_failcrt),BTERROR_DEVICE,"getRemoteDevice failed"));
}
}
catch (Exception e) {
sendEventStatus(EnEvent.EVT_BTADAPTER_FAIL, e.getMessage());
return;
}
InputStream tmpIn = null;
OutputStream tmpOut = null;
mmSocket = socket;
// Get the input and output streams, using temp objects because
// member streams are final
try {
tmpIn = socket.getInputStream();
tmpOut = socket.getOutputStream();
}
catch (IOException e) {
ServiceResponse.send(EnEvent.EVT_ERROR, GlobalData.rString(R.string.srv_failcst) + e.getMessage());
resetConnection();
runBTreceiver=false;
}
mmInStream = tmpIn;
// mmOutStream = tmpOut;
mmBufferedOut = new BufferedOutputStream(tmpOut,80);
// Initial request
btWrite(new DeviceRecord(0, 4));
I have never discovered any problems sending and receiving data via this code. All records are sent and received properly. Only problem was that I am unable to purge the transmit buffer at the moment the operate button was released.
To overcome this problem, I have changed the protocol in such a way, that only a single 'keep turning' telegram is send at a time, the next telegram will be send after a response from the other end (sort of handshaking), the program then continue to run this ping/pong until the button is released.
This method works quite well as the transmit buffer will never hold more than one telegram at a time.
the mentioned problem is solved though but I still have no clue of whether it would be possible to purge a transmit buffer
In the bluetoothChat example app, the sent and received data is added into a ArrayAdapter called mConversationArrayAdapter. There, each character is added into the array.
In my case, I have a String instead of an array because I don't need to send and receive several data, I only need to send one string, and receive one string each time.
The problem that I'm getting is that if I first receive a string like hello world, and then I receive a shorter one, the first is overwrited by the second, instead of deleting the first and writing the new.
So, if i first receive hello world, and then I supposse that I have to receive bye, what I really receive is byelo world.
So, how can I clear the buffer each time a receive what I want?
Code Snipets
Send data:
byte[] send1 = message_full1.getBytes();
GlobalVar.mTransmission.write(send1);
Write call:
public void write(byte[] out) {
/**Create temporary object*/
ConnectedThread r;
/**Synchronize a copy of the ConnectedThread*/
synchronized (this) {
if (GlobalVar.mState != GlobalVar.STATE_CONNECTED) return;
r = GlobalVar.mConnectedThread;
}
/**Perform the write unsynchronized*/
r.write(out);
}
Write Thread:
public void write(byte[] buffer) {
try {
GlobalVar.mmOutStream.write(buffer);
/**Share the sent message back to the UI Activity*/
GlobalVar.mHandler.obtainMessage(GlobalVar.MESSAGE_WRITE, -1, -1, buffer).sendToTarget();
} catch (IOException e) {}
}
Finally, read Thread:
public void run() {
byte[] buffer = new byte[12]; // buffer store for the stream
int bytes; // bytes returned from read()
/**Keep listening to the InputStream until an exception occurs*/
while (true) {
try {
/**Read from the InputStream*/
bytes = GlobalVar.mmInStream.read(buffer);
/**Send the obtained bytes to the UI activity*/
GlobalVar.mHandler.obtainMessage(GlobalVar.MESSAGE_READ, bytes, -1, buffer).sendToTarget();
} catch (IOException e) {
GlobalVar.mTransmission.connectionLost();
/**Start the service over to restart listening mode*/
//GlobalVar.mTransmission.start();
break;
}
}
}
try this
bytes = inputStream.read(buffer);
buffer[bytes] = '\0';
I have implemented a bluetooth connection using the now-classic Google Bluetooth Chat code. However, I have a question which I just cannot seem to wrap my brain around.
The reading of the input stream goes something like this:
public void run() {
byte[] buffer = new byte[1024]; // buffer store for the stream
int bytes; // bytes returned from read()
// Keep listening to the InputStream until an exception occurs
while (true) {
try {
// Read from the InputStream
bytes = mmInStream.read(buffer);
// Send the obtained bytes to the UI Activity
mHandler.obtainMessage(MESSAGE_READ, bytes, -1, buffer)
.sendToTarget();
} catch (IOException e) {
break;
}
}
}
Now, that's fine if I was just printing out the characters I was receiving as in the original example. However, suppose I wanted to transfer an image file. I don't know the size of the file, so I cannot count the bytes received or anything like that. In my tests, I don't seem to be ever receiving a "-1" from the input stream, which appears to be the "norm" for reading from input streams. So how can I know that I have reached the end of the file that was being sent?
Thank you for your help and your time.
It seems Android bluetooth input streams never return -1.
I guess setup a simple protocol by sending file size in the first place and EOF signals at last will help.
No it does not. Android sends -1 only when the Socket is closed as far as I know. So a workaround could be to do a reconnect, but I was trying that for hours and did not get it working, since I do not understand this "special" Code here (copied from a Stackoverflow Thread) for setting up the socket:
BluetoothSocket tmp = null;
Log.d(TAG, "New Connection initialized");
Method m;
try {
m = device.getClass().getMethod("createRfcommSocket",
new Class[] { int.class });
tmp = (BluetoothSocket) m.invoke(device, 1);
} catch (Exception e) {
e.printStackTrace();
}
mmSocket = tmp;
This Socket only works, when my App is started for the first filetransfer. If I want to "Reconnect" with a completely new instantiated Object (and a new Socket created with that Code), the program freezes on the blocking method mmSocket.connect(). It seems like the Method never comes to an ending. This is driving me nuts...
Try
while ((bytes = mmInStream.read(buffer) != -1)
and see if that helps.
Try this:
public void run() {
byte[] buffer;
ArrayList<Integer> arr_byte = new ArrayList<Integer>();
while (true) {
try {
int data = mmInStream.read();
if(mmInStream.available()>0) {
arr_byte.add(data);
} else {
arr_byte.add(data);
buffer = new byte[arr_byte.size()];
for(int i = 0 ; i < arr_byte.size() ; i++) {
buffer[i] = arr_byte.get(i).byteValue();
}
Log.e("INPUT",new String(buffer));
mHandler.obtainMessage(MESSAGE_READ, bytes, -1, buffer)
.sendToTarget();
arr_byte = new ArrayList<Integer>();
}
} catch (IOException e) {
break;
}
}
}