Order of dependency injection when using scopes - android

I'm currently trying to figure out Dagger 2. I am trying to set up 4 scopes: App, User, Activity, Fragment. User and Activity components are Subcomponents of App. Fragment is a Component with Activity as its dependency.
Say my UserSettingsActivity needs a Toolbar (provided by ActivityModule), and a UserProfile (provided by UserModule). I won't get a UserProfile until I ask for it from the database, whereas the Toolbar can be provided right away. So the order of injection that takes place is into ActivityComponent first, then into UserComponent. I have 2 #Inject fields, one for Toolbar and one for UserProfile in the activity. I was hoping that dagger will know that the dependencies are coming from different modules, but it seems to complain that UserProfile can't be provided when injected into ActivityComponent. Obviously it can't be provided by ActivityModule, but why is it not making a connection that UserProfile is provided by UserModule?

To my best knowledge, Dagger-2 doesn't support "partial injections".
Therefore, when you call myComponent.inject(this), Dagger-2 throws an error if myComponent can't provide all #Inject annotated members of this.
I see two ways to work around this limitation:
Remove #Inject annotation from UserProfile, expose UserProfile via public method in UserComponent and inject it manually when UserComponent is ready to be used. Something analogous to this: userProfile = userComponent.getUserProfile()
Don't make UserComponent dependent on data fetching. UserComponent could be used to inject Toolbar and some UserProfileProvider at the same time, and you will fetch UserProfile from UserProfileProvider when it is available.
I personally think that second approach is the better choice. DI libraries should be used in order to satisfy objects' dependencies at construction time. In Android we can't construct Activity or Fragment ourselves, therefore we perform DI in onCreate(), onAttach(), onCreateView(), etc., but it does not mean that we should be using DI libraries in order to assist in controlling the flow of applications.

Subcomponents work's similar to inheritance(extends), in your case User component and Activity component extending App component but there is no relation between User component and Activity component so when you request User dependency in Activity it will fail.
Subcomponent can't provide any dependency to other Subcomponent.
Instead, you can make Activity component as a subcomponent of User component. This will also give you the flexibility to switch user.

Related

Dagger2 scope, instance per component

I'm looking for a quick confirmation about Dagger 2 scopes in Android.
In many resources online you will find that #ActivityScope and #FragmentScope are added to components that provide bindings for activities and fragments.
I would like to have some confirmation that this implies that there will be 1 instance for all activities / all fragments respectively.
That is, if, say, two activities use the same component for receiving dependencies from the same component annotated with scope 'Activity', both activities will receive the same instance (like singleton annotation would work).
So in that case having #ActivityScope and #FragmentScope annotations would only be useful to segregate between dependency lifetimes between activities versus fragments.
So if I would need a dependency object for which I need a separate instance in two activities, I should scope them explicitly (e.g. #LoginActivityScope).
Could you confirm that this assumption is correct?
Edit:
Reading the docs about subcomponents, it confuses me a bit:
No subcomponent may be associated with the same scope as any ancestor
component, although two subcomponents that are not mutually reachable
can be associated with the same scope because there is no ambiguity
about where to store the scoped objects. (The two subcomponents
effectively have different scope instances even if they use the same
scope annotation.)
This would seem to assume that if you have multiple components using the same annotation, it does create a separate instance when the same scope annotation is used for different components.
I find it a bit unclear as to what a scope instance refers to. This actually refers to the binding?
Does this only apply to subcomponents?
Some clarification about scope vs dependency instances (bindings) would be very helpful.
A scoped component will create a scoped object the first time it is used, then it will hold on to it. If you create the same component a second time it will also create the scoped object the first time it gets used. Components are just objects, they don't hold any global (static) state, so if you recreate the component, you recreate everything along with it.
val component = DaggerScopedComponent.create()
component.getScopedObject() === component.getScopedObject() // always the same object!
// never the same object! two different components, albeit same scope
DaggerScopedComponent.create().getScopedObject() != DaggerScopedComponent.create().getScopedObject()
Dagger generates code, so I would invite you to create a simple example and have a look at the code. e.g. the sample above should be very easy to read
#Singleton class Foo #Inject constructor()
#Singleton #Component interface ScopedComponent {
fun getScopedObject() : Foo
}
If you have a scoped component that lives longer than its subscopes then you have to keep a reference to this component and reuse it. The usual practice is to hold a reference to the component in the object whose lifecycle it shares (Application, Activity, Fragment) if needed.
Let's say we add a subcomponent to the example above
#Singleton class Foo #Inject constructor()
#Singleton #Component interface ScopedComponent {
fun getScopedObject() : Foo
fun subComponent() : SubComponent
}
#Other #Subcomponent interface SubComponent {
fun getScopedObject() : Foo
}
#Scope
#MustBeDocumented
annotation class Other
As long as we use the same #Singleton component we will always get the same #Singleton scoped objects.
// Subcomponents will have the same object as the parent component
component.subComponent().getScopedObject() === component.getScopedObject()
// as well as different Subcomponents
component.subComponent().getScopedObject() === component.subComponent().getScopedObject()
Now on to your questions...
I would like to have some confirmation that this implies that there will be 1 instance for all activities / all fragments respectively.
That is, if, say, two activities use the same component for receiving dependencies from the same component annotated with scope 'Activity', both activities will receive the same instance (like singleton annotation would work).
As shown above, any scoped object provided from the same scoped component will be the same no matter which subcomponent. If you create two #ActivityScope MyActivityComponent then everything scoped #ActivityScoped will be created once per component.
If you want objects to be shared between your Activities' components you have to use a higher scope and keep the reference to the created component.
So in that case having #ActivityScope and #FragmentScope annotations would only be useful to segregate between dependency lifetimes between activities versus fragments.
No, because you can have a #ActivityScope FooActivityComponent and a ActivityScope BarActivityComponent and they would never share a #ActivityScope class FooBar object, which will be created once for every #ActivityScope scoped component.
So if I would need a dependency object for which I need a separate instance in two activities, I should scope them explicitly (e.g. #LoginActivityScope).
#ActivityScope FooActivityComponent and #ActivityScope LoginActivityComponent will never share any #ActivityScope scoped objects. You can use the same scope here. You can also create a different scope if you like to do so, but it would make no difference here.
This would seem to assume that if you have multiple components using the same annotation, it does create a separate instance when the same scope annotation is used for different components.
Yep
I find it a bit unclear as to what a scope instance refers to. This actually refers to the binding? Does this only apply to subcomponents?
You can't have a hierarchy of components like Singleton > ActivityScope > ActivityScope since those duplicated scopes would make it impossible to know whether a #ActivityScope scoped object was part of the first or second one.
You can have two different components of the same scope, both subcomponents of the same parent (they can't "reach" each other), and any #ActivityScope scoped object would be part of the latter #ActivityScope scoped component. You'd have one scoped object per component (as shown in the example above) and you could have two component instances or more.
Singleton > ActivityScope FooComponent
Singleton > ActivityScope BarComponent
I recommend you forget about Android for a bit and just play around with Dagger and the generated code, like with the code shown on top. This is IMHO the quickest way to figure out how things work, once the "magic" is gone and you see that it's just a POJO with a few variables in it.

How to create custom scope and share same instances using Dagger Android

So here are the things I know from the doc
Dagger Android under the hood is creating subcomponent for each Activity annotated with ContributesAndroidInjector
You can apply custom scope to the method where ContributesAndroidInjector is annotated to
If two sibling subcomponents have the same scope, they will still have different scope instances
If an Activity is in a subcomponent, it can have its own subcomponent which can contain Fragments. Those Fragments will share the scoped instances the Activity has.
Now my question is:
How to have one Activity be a subcomponent of another activity using Dagger Android?
I want to do this because I want to achieve things like #UserScope/#SessionScope.
From this I know that I can do it with just Dagger not Dagger Android. But with Dagger Android, you can only have the Application (which is the AndroidInjector) to inject Activity. You can not have an Activity used as a holder or host of the parent subcomponent to inject another Activity.
Am I understanding it correctly?
05/14/2018 Update:
I ended up getting rid of Dagger Android. So no more ContributesAndroidInjector, just pure Dagger. And to inject Activity/Fragment, I use the way that's recommended here. It will be something like this:
class MyActivity : AppCompatActivity() {
private val factory: ViewModelProvider.Factory = Injector.myCustomScope().factory()
}
And we are trying to make sure the factory is the only thing that Activity/Fragment needs.
So far it's been great.
How to have one Activity be a subcomponent of another activity using Dagger Android?
tl;dr You can't. Dagger Android follows a strict AppComponent > ActivityComponent > FragmentComponent scheme and there is no way to add custom scopes in-between.
I suggest you have a look at the Dagger Android source code, it's really not that much. It's basicalle a HashMap for each layer where you look up the component builder and build the subcomponent. A fragment looks at its parent Activity, an Activity looks at the Application. There is no feature where you can add custom components between layers.
What you can do is create your own variant of "Dagger Android" where you can implement your own interfaces and mix/match components as you need them. But that's quite a bit of extra work. I created a #PerScreen scope that survives configuration changes as a proof of concept if you are interested to see how you could do such a thing.
You can create a custom Scope called for example #PerScreen, also you will have #PerActvity scope. The difference between these scopes is that the #PerActivity scope will maintain shared dependencies between all activities like Context, Layout Inflater, etc. And all activity specific dependencies will be scoped as #PerScreen.
#PerApplication -> #PerActivity -> #PerScreen
This could structured like that.
I have explained scopes under the hood in my blog post, you can refer to it to get better understanding of this matter.

Dagger2 sub-component confusion in Android

My Goal :
To understand how scope works and how to Implement a UserScope that I can use over multiple Activities and reset/create a new one as required.
Methods I am using :
This Blog: http://frogermcs.github.io/building-userscope-with-dagger2/
It apparently explains the same thing that i am trying to achieve here.
Official Docs
http://frogermcs.github.io/building-userscope-with-dagger2/
Quick brief on Blog
Obviously, There is UserModule and UserComponent. Author has wrapped the creation of UserComponent under UserManager which has ApplicationScope. So UserManager is available at time of log in. when login is successful UserComponent is initialized via UserManager. Simple logic.
Now this already initialized #UserScope is used in couple of Activities, as you can see in the picture.
What I am struggling to understand
Take a look at UserComponent.
public interface UserComponent {
#Subcomponent.Builder
interface Builder {
Builder sessionModule(UserModule userModule);
UserComponent build();
}
UserDetailsActivityComponent plus(UserDetailsActivityComponent.UserDetailsActivityModule module);
RepositoriesListActivityComponent plus(RepositoriesListActivityComponent.RepositoriesListActivityModule module);
LogoutManager logoutManager();
}
Specifically UserDetailsActivityComponent and RepositoriesListActivityComponent are created through UserComponent. Like this,
#Override
protected void onUserComponentSetup(UserComponent userComponent) {
userComponent.plus(new UserDetailsActivityComponent.UserDetailsActivityModule(this)).inject(this);
}
So they first get pre-created in UserComponent through UserManager and then it calls onUserComponentSetup which then creates the appropriate Component and injects the current Activity.
I fail to comprehend with this pattern mentioned above, as I have read in the docs that we use plus(InjectionToBeDoneOn i) when we need the injection on a particular instance of InjectionToBeDoneOn. But why inject this Activity via this Component? What does this accomplish? Wouldn't it make sense to do this the conventional way in onCreate() of the activity with DaggerXYZComponent().Builder().Build().inject(activity)?
Also, I am missing decent material of how UserScope is implemented in Android which has life span from log-in to log-out but not bigger than the #Singleton scope.
we use plus(InjectionToBeDoneOn i) when we need the injection on particular instance of InjectionToBeDoneOn
Not quite. A component has basically 3 kinds of methods
SomeDependency provideDependency() which just creates / provides some dependency to subcomponents, or for manual retrieval (basically a getter)
void inject(MyAndroidFrameworkClass object) that injects an object with its dependencies
SomeSubComponent plus(SubComponentModule module) that creates a subcomponent, adding additional modules
You're mixing up 2. and 3. here.
// user scoped component
userComponent
// create a subcomponent (UserDetailsActivityComponent)
.plus(new UserDetailsActivityComponent.UserDetailsActivityModule(this))
// use the UserDetailsActivityComponent that was just created and inject with it
.inject(this);
UserDetailsActivityComponent is a subcomponent of UserComponent, which is why the userComponent gets extended .plus(somemodule) to create a subcomponent. If your submcomponent does not need additional modules you can also just use .plus() because to Dagger the important thing is the return type or signature in general.
If it returns another component, then it creates a SubComponent.
If it hast one parameter and returns void or the parameters type, then it is an inject method
If it has no parameters and returns some type is is a provides method (1.) to expose some dependency
but why inject this Activity via this Component? What does this accomplish?
If you were to create UserDetailsActivityComponent from scratch, it would only see and know about what it can provide itself. If you have some #Singleton somewhere it could not access any of it, because it is not part of the object graph.
A subcomponent extends another component, adding to the object graph. If you have a #Singleton A and your UserComponentn needs A to provide B, with a subcomponent this will work, without it you will get a cannot be provided error.
Dagger is no magic. It really just builds up a directed graph and checks whether everything is fine. It will complain if some dependencies have cyclic dependencies on one another or if some part of the graph doesn't have access to dependencies it need.
Your UserComponent holds your userdata. For simplicity lets say it holds the UserName. Now UserDetailsActivity might want to display UserName, but it needs some way to get it.
By using the #Singleton AppComponent as a parent you'd have access to some Apis, but not the user scoped ones. You could move the user scoped objects into the #Singleton AppComponent, but then you'd either have to recreate the AppComponent every time the user changes (which kind of defeats the purpose of declaring it #Singleton, or you'd have to find some other means to update / change the user.
If you want to do it the Dagger way, you create a UserComponent that adds the User to the graph. That way subcomponents can access it and do their user things.
When the user changes you have to make sure to destroy any activities / fragments that used the UserComponent, and you just recreate everything—with a new user.
wont it make sense to do in conventional way in OnCreate() of the activity with DaggerXYZComponent().Builder().Build().inject(activity)
You can do that of course. The author just put the calls to app.getAppcomponent().getUserManager().getUserComponent() or something like this into their BaseActivity and BaseUserActivity so that you wouldn't have to repeat the same lines of code every time. This method will basically still be called in onCreate, it just enables you to use the components directly, without fetching them every single time.
You can obviously remove those template methods and inline everything in onCreate, leading to duplicated code, making maintenance harder in the long run.
i am missing decent material of how UserScope is implemented in android which has life span from log-in to log-out but not bigger than #SingleTon scope.
Android doesn't help and it's your job to clean up after yourself. If the user changes you purge everything the UserComponent and its SubComponents touched, and recreate it with the new user.
You will have to store the UserComponent with the current user either in the Application class, some "real" singleton, or some "Manager" in the application component with a #Singleton scope. Every approach has their own benefits I guess.
Scopes just point out to Dagger that one object should exist within a Scope only once. It doesn't matter what you name it, or how many objects are in the Scope. Dagger only needs them to ensure that there are no dependency cycles.

Ensuring only one instance per scope in Dagger2

So, what I am trying to accomplish is to ensure that I have only one instance per scope in Dagger2.
Default Singleton scope already works that way. No matter on how many places you inject same object, let's call it GlobalInstance, method GlobalInstance provideGlobalInstance() that constructs it will be called once and only once.
On the other side, if I define custom scope, for example #SessionScope and inside some SessionModule I make method User provideUser(), that method (and, consequentially, new User() constructor) will be called as many times as I am injecting User. No matter if I use the same module instance every time, User provideUser() is being called for every #Inject User mUser I have in my code, resulting with multiple instances, instead of one scope-limited "singleton".
Is there some clear way to achieve it, using regular Dagger api. One way to do it is to have lazy getters inside the module class, but it is not very clean way to do it.
Please note that #Singleton scope is functionally equivalent to any other custom scope you define.
It means that you could have two flavors of #Provides methods in SessionModule:
#Provides #SessionsScope - provides "session singletons" (more on this later)
#Provides - provides new object on each injection
Please note that the term "singleton" have some ambiguity when we talk about Dagger, therefore I prefere to use term "scoped objects". When scoped object injected with Dagger for the first time, the component caches its instance and returns it on each subsequent injections PERFORMED BY THE SAME COMPONENT.
For more information you can read this post: Android Dagger 2 Scopes Demistified

DI with Dagger 2, replace sub-component on built component

I'm relatively new to Dagger2 but I've come to love the advantages of using it on my projects. I'm currently trying to understand Custom Scopes.
I have this basic app setup: ApplicationComponent, ActivityComponent, UserComponent. And this is how I intend them to work in my app
[-----------User scope-------------]
[ Activity scope ][ Activity scope ][ Activity scope ][ Activity scope ]
[-----------------------Aplication Scope (Singleton)-------------------]
In the two activities in the middle the user is logged in.
My dependency graph looks like this: AplicationComponent <- ActivityComponent <- UserComponent
UserComponent depends in ActivityComponent to work, and ActivityComponent depends on AplicationComponent.
UserComponent is just a "Specialized" ActivityComponent that also provides the current logged in user.
Activities that dont need the user will just be injected using ActivityComponent, those who need the user injected will need to use UserComponent. Hope it makes sense.
When the user first logs in, I create an UserComponent in the current activity:
ActivtyComponent activityComponent = DaggerActivityComponent.builder()
.activityModule(new ActivityModule(this)) //** here, 'this' is the current Activity
.applicationComponent(MyApplication.getApp(getActivity()).getAppComponent())
.build();
UserComponent userComponent = DaggerUserComponent.builder()
.activityComponent(activityComponent)
.build();
userComponent.inject(this);
//Store user component to be retrieved by other activities
MyApplication.getApp(getActivity()).storeUserComponent(userComponent);
This works fine. Now, say that I start a new Activity and try to inject its dependencies. This time is a lot easier, I already have a UserComponent stored for this reason! I can just use that one, right?:
MyApplication.getApp(getActivity()).getUserComponent().inject(this);
Wrong!... It will crash! because that component still has the previous activity stored in its activity module (**see code above)
And I don't want to create another UserComponent, that would render the scope useless... all provides methods will be called again, am I right?
I need that specific component, not a new one. But I have to somehow swap its ActivityComponent for a new one, the new one will have this activity passed in in its activityModule... that's my question:
Is it possible? Am I looking at this the right way?
Can I change sub components in already built components?
Thanks in advance
Usually the way most tutorials show it is that you have your dependencies like AppComponent <- UserComponent <- ActivityComponent
Components create scoped objects once and if something changes you should create a new component. There is no hot swapping modules or objects in dagger 2 and if you try thinking this through you see why:
If you provide dependency A, then use A everywhere, then replace A with NEW-A and start using NEW-A from that point on...That is a really inconsistens state that you might wanna avoid.
A component should live in its respective life cycle. If your component keeps a reference to the activity it should be used along with just this activity or it will lead to a memory leak (or errors like yours).
If your user component depends on the application, then you can store that component within the application without creating any issues. Your activities then just create their own, scoped components—using and depending on either the application- or user component.

Categories

Resources