I have:
#Inject
AdalService adalService;
#Inject
Realm realm;
Both of these come from two different Components.
AdalComponent
#UserScope
#Component(dependencies = {NetComponent.class}, modules = AdalServiceModule.class)
public interface AdalServiceComponent
{
void inject(MainActivity activity);
void inject(EventsJob eventsJob);
}
RealmComponent
#UserScope
#Subcomponent(modules = RealmModule.class)
public interface RealmComponent
{
void inject(EventsJob eventsJob);
}
But I get the following error:
Error:(16, 10) error: io.realm.Realm cannot be provided without an #Inject constructor or from an #Provides- or #Produces-annotated method.
io.realm.Realm is injected at
com.bjss.bjssevents.jobs.EventsJob.realm
com.bjss.bjssevents.jobs.EventsJob is injected at
com.bjss.bjssevents.dagger.components.AdalServiceComponent.inject(eventsJob)
RealmModule
#Module
public class RealmModule
{
private static final String TAG = RealmModule.class.getSimpleName();
public RealmModule(#Singleton final Context context)
{
Log.d(TAG, "Configuring Realm");
Realm.init(context);
Realm.setDefaultConfiguration(new RealmConfiguration.Builder().deleteRealmIfMigrationNeeded().build());
}
#UserScope
#Provides
public Realm providesRealm()
{
Log.d(TAG, "Providing Realm");
return Realm.getDefaultInstance();
}
}
Inside AdalServiceComponent and RealmComponent you have the same method:
void inject(EventsJob eventsJob);
That is unacceptable. The must be only one inject method for specified object (argument of inject method).
Also you can't inject things from two moduled at the same level. Both Component's are annotated with the same Scope: #UserScope. They don't know nothing about each other. If you want to define resources in AdalServiceComponent and RealmComponent make one of them parent Component and the other one Subcomponent. And the inject method should be in subcomponent.
Please read this excellent article series about advanced Dagger-2 behaviour to gain better understanding of this library.
Related
How do I create a singleton object that I can access anywhere from any place in my code?
Objects(1) from which I want to inject my signleton component can't be created withing dagger.
Those objects don't have common dependencies which I can access (like getApplication()
Quick to an example:
InjectedClass:
public class InjectedClass {
public InjectedClass() {
System.out.println("injected class created");
}
}
HolderClassA:
public class HolderClassA { // this is one of object I marked with (1)
#Inject InjectedClass b;
public HolderClassA() {
Injector build = DaggerInjector.builder().build();
build.inject(this);
System.out.println(b);
}
}
HolderClassB:
public class HolderClassB { // this is another object I marked with (1)
#Inject InjectedClass b;
public HolderClassB() {
Injector build = DaggerInjector.builder().build();
build.inject(this);
System.out.println(b);
}
}
Provider:
#Module
public class Provider {
#Provides
#Singleton
InjectedClass provideInjectedClass() {
return new InjectedClass();
}
}
Injector:
#Component(modules = {Provider.class})
#Singleton
public interface Injector {
void inject(HolderClassA a);
void inject(HolderClassB a);
}
Somewhere in code:
new HolderClassA();
Somewhere else in code that is NO WAY related to previous code, nor has the same parent or can access same objects (like in dagger guide with getApplication()):
new HolderClassB();
Actual result: two instances of InjectedClass are crated
Expected result: a single instance of InjectedClass is created.
The issue is DaggerInjector.builder().build(); creates different scopes which don't know about each other. For example, I can solve this issue by creating static variable DaggerInjector.builder().build() and call inject from it. But thus it wouldn't be dependency injection anymore, but rather not trivial singleton pattern.
From what I understand from comments, you want separate components for your holder classes, that would inject same instance? Pardon me if I am wrong.
You can try this.
#Component(modules = arrayOf(AppModule::class))
#Singleton
interface AppComponent {
//sub components
fun plusHolderClass1(holderModule: HolderModule1):HolderComponent1
fun plusHolderClass2(holderModule: HolderModule2):HolderComponent2
//provision methods
fun getInjectedClass():InjectedClass
}
This is your application component, or the top level component, that you initialise in your application, of course using your Module class that will provide the Injected class as a singleton.
#Subcomponent(modules = arrayOf(HolderModule1::class))
#ActivityScope
interface HolderComponent1{
fun inject(holder:Holder1)
}
And a similar one for Holder2 class. You can define your local scope dependencies in the modules.
But of course even in this case you have to store the instance of appComponent in Application class.
While injecting
appComponent.plusHolderComponent1(HolderModule1()).inject(yourObject)
The InjectedClass object will be injected to yourObject by fetching it from provision methods
I think I'm missing something. I get this error:
PostsVM cannot be provided without an #Inject constructor or from an
#Provides-annotated method.
Assume classes as follows :
#Module
public class AppModule {
private final Application mApplication;
#Singleton
#Provides
ViewModel provideListViewModel() {
return new PostsVM();
}
}
And a class PostVM
#Singleton
public class PostsVM extends ViewModel {
public boolean get(){
return true;
}
}
And a component :
#Singleton
#Component(modules = AppModule.class)
public interface AppComponent {
void inject(Global global);
void inject(MainActivity mainActivity);
#Architecture.ApplicationContext
Context getContext();
Application getApplication();
}
And in activity :
#Inject
public ViewModelProvider.Factory factory;
#Override
protected void onCreate(Bundle savedInstanceState) {
InjectorClass.inject(this);
As you can see, the example given for PostVM class, does't depend on anything, why do I need an #inject constructor in it?
tl;dr To prevent errors and to follow convention.
From the JavaDoc of #Inject you can read:
Injectable constructors are annotated with #Inject and accept zero or more dependencies as arguments. #Inject can apply to at most one constructor per class.
And it's always good practice to follow the convention / documentation.
So #Inject marks an entry point for Dagger to signal it how and where to create your class. It is a clear sign of how you intend your class to be used.
What if you have multiple constructors?
What if you require additional setup and should use a #Module instead?
By just defaulting to a no-args constructor (if possible) things could start breaking very easily and you might not be able to pinpoint the source easily if you just assume Dagger does its job.
__ cannot be provided without an #Inject constructor or from an #Provides-annotated method.
This error on the other hand gives you a strong signal that you're missing something and cannot be ignored.
I'm having a similar problem like the one in this question.
While the accepted answer does help, but I'm missing final piece to solve the problem.
I have 2 android library modules: common and exp which depends on common.
Everything under common:
#Module
public class CommonModule {
#Singleton
#Provides
public Repository providesRepository() {
return new Repository();
}
}
#Singleton
#Component(modules={CommonModule.class})
public interface CommonComponent {
void inject(CommonClass commonClass);
/**
CommonClass needs instance of Repository
**/
}
public class CommonDIHolder {
public static CommonComponent sComponent;
public static void init() {
sComponent = DaggerCommonComponent.builder().build();
}
}
Everything under exp:
#Module(includes={CommonModule.class})
public class ExpModule {
#Singleton
#Provides
public ExpResource provideExpResource() {
return new ExpResource();
}
}
#Singleton
#Component(modules={ExpModule.class}, dependencies={CommonComponent.class})
public interface ExpComponent {
void inject(ExpClass expClass);
/**
ExpClass needs instance of Repository and ExpResource
**/
}
public class ExpDIHolder {
public static ExpComponent sComponent;
public static void init() {
sComponent = DaggerExpComponent.builder()
.commonComponent(CommonDIHolder.sComponent)
.build();
}
}
I need both CommonClass and ExpClass receive the same instance of Repository.
The problem with this approach is that #Singleton can't depends on #Singleton. So I have to change the scope of ExpComponent into self-defined scope called #ExpScope. Then I changed the provideExpResource into #ExpScope as well.
Then I encountered an error saying that ExpComponent may not reference bindings with different scopes. It refers to the provideRepository which has different scope (#Singleton) on it. If I changed the scope into ExpScope then the CommonComponent will have different scope with provideRepository.
If I changed all #Singleton into #ExpScope then I receive this error message: depends on scoped components in a non-hierarchical scope ordering
What should I do? Or I'm doing the wrong approach here?
Use one and only one #Singleton scoped component
You should have one and only one #Singleton scoped component like this:
#Singleton
#Component(modules={CommonModule.class, ExpModule.class})
public interface CommonComponent {
}
Only specify Activities, Fragments, and Services as explicit injection targets for Components
In an Android app, you should only list Activities, Fragments and Services as injection sites. You should configure Dagger 2 to inject the rest of your dependencies without having to resort to calling component.inject(this) inside them.
For example, if your CommonClass looks like this:
public class CommonClass {
#Inject Repository repository;
public class CommonClass() {
CommonComponentHolder.get().inject(this);
}
}
Refactor it like this:
public class CommonClass {
private final Repository repository;
#Inject
public class CommonClass(Repository repository) {
this.repository = repository;
}
}
Now when you have an Activity or Fragment that needs CommonClass and you are injecting with CommonComponent or one of its sub-components or dependent components, they can obtain instances of CommonClass wired with the correct dependencies:
public class MyActivity extends AppCompatActivity {
#Inject CommonClass commonClass;
public void onCreate(Bundle savedInstanceState) {
CommonComponentHolder.getComponent().inject(this);
}
}
Use subcomponents or dependent components to specify the injection targets
Now you have a #Singleton scoped component, you'll probably want to create a component for a narrower scope for your Activity or Fragment. You'll have to connect it to your CommonComponent, so use dependent components or subcomponents (subcomponents are preferred as of Dagger 2.10). Since you say you have already tried defining a #ExpScope, I think the missing piece is to make subcomponent or dependent component with the #ExpScope that injects your Activity or Fragment.
Something like the following for the top-level singleton component:
#Singleton
#Component(modules={CommonModule.class, ExpModule.class})
public interface CommonComponent {
ExpComponent.Builder exComponent();
}
And then for the subcomponent:
#ExpScope
#Subcomponent(modules = {NarrowerScopedModule.class})
public interface ExpComponent {
#Subcomponent.Builder
public interface Builder {
Builder narrowerScopedModule(NarrowerScopedModule narrowerScopedModule);
ExpComponent build();
}
}
There are good working examples of Android projects in the Google Android Architecture Blueprints Github repo
Hello I am new to Dagger2.
Goal. Take my Networking DI and MVP DI. MVP as in the presenter for an an activity that extends base activity. I want to combine all this into one super module and place this into my base activity. Over time add more presenters.
I do not want 30+ inject statements in my baseActivity.
I am following this example but it is too simple compared to what I am trying to do.
I think the issue is with injecting the API at the base activity. For some reason Dagger is looking for Api in my MVP class.. So that would be a dependency graph issue?
Having spent more time on this.. The issue stems from Mvp's interface of baseActivity or any sub activity that extends baseActivity. That means when it goes to inject, it sees the #inject Api call, and cannot find it. It will work if I add Api to this module, but thats upside down of what I want. I want Component / Module for Application level items. I then want a component / module that has all my different MVP component in one module.. It's like Dagger starts looking for dependencies in the leaf of a tree and getting upset when it doesn't see whats in the root. I need it to go the other way. Be satisfied that I injected the dependency in the Root activity.
Base Activity...
#inject
public ApiClient mClient;
#Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
mManager = new SharedPreferencesManager(this);
DaggerInjector.get().inject(this);
}
DaggerInjector
public class DaggerInjector {
private static AppComponent appComponent = DaggerAppComponent.builder().appModule(new AppModule()).build();
public static AppComponent get() {
return appComponent;
}
}
#Component(modules = {AppModule.class, ApiModule.class, MvpModule.class})
#Singleton
public interface AppComponent {
void inject(BaseActivity activity);
}
Api
#Singleton
#Component(modules = {ApiModule.class})
public interface ApiComponent {
void inject( BaseActivity activity);
}
#Module
public class ApiModule {
#Provides
#Singleton
public ApiClient getApiClient(){
return new ApiClient();
}
}
Mvp
#Singleton
#Component(modules = {MvpModule.class})
public interface MvpComponent {
void inject(BaseActivity activity);
}
#Module
public class MvpModule {
#Provides
#Singleton
public MvpPresenter getMvpPresenter(){ return new MvpPresenter();}
}
Error:(16, 10) error: ApiClient cannot be provided without an #Inject constructor or from an #Provides- or #Produces-annotated method. This type supports members injection but cannot be implicitly provided.
ApiClient is injected at
...BaseActivity.ApiClient
...BaseActivity is injected at
MvpComponent.inject(activity)
I found out my problem. I needed to use a subcomponent.
#Singleton
#Subcomponent(modules = {MvpModule.class})
public interface MvpComponent {
void inject(BaseActivity activity);
}
#Module
public class MvpModule {
#Provides
#Singleton
public MvpPresenter getMvpPresenter(){ return new MvpPresenter();}
}
see
Dagger- Should we create each component and module for each Activity/ Fragment
Dagger2 activity scope, how many modules/components do i need?
I've started using Dagger 2 and faced strange issue that looks like a bug to me.
I have 3 modules, that are composed into one subcomponent, which in turn extends/pluses higher level component.
Subcomponent is pretty simple: just combination of modules and a single injection point:
#Singleton
#Subcomponent(
modules = {
NavigationDrawerModule.class,
NavigationListModule.class,
SwitcherModule.class
}
)
public interface NavigationDrawerComponent {
NavigationDrawerFragment inject(NavigationDrawerFragment object);
}
First modules looks like this - it provides general fragment-level dependencies:
#Module
public class NavigationDrawerModule {
private final Activity activity;
private final View rootView;
private final LoaderManager loaderManager;
public NavigationDrawerModule(Activity activity, View rootView, LoaderManager loaderManager) {
this.activity = activity;
this.rootView = rootView;
this.loaderManager = loaderManager;
}
#Provides #Singleton EventBus provideLocalBus() {
return EventBus.builder().build();
}
#Provides #Singleton View provideViewRoot() {
return rootView;
}
#Provides #Singleton LoaderManager provideLoaderManager() {
return loaderManager;
}
#Provides #Singleton Context provideContext() {
return activity;
}
}
Second module looks like this - it provides presenter/controller and their dependencies for a subset of UI on screen:
#Module
public class SwitcherModule {
#Provides SwitchController provideSwitcherController(SwitchControllerImpl impl) {
return impl;
}
#Provides SwitcherView provideSwitcherView(SwitcherViewImpl impl) {
return impl;
}
}
Third module - another presenter/controller for a subset of UI:
#Module
public class NavigationListModule {
#Provides #Singleton NavigationListController provideNavigationListController(NavigationListControllerImpl impl) {
return impl;
}
#Provides #Singleton NavigationListView provideNavigationListView(NavigationListViewImpl impl) {
return impl;
}
}
Relevant part of the fragment that is being injected:
#Inject SwitchController identitySwitchController;
#Inject SwitcherView identitySwitcherView;
#Inject NavigationListController navigationListController;
#Inject NavigationListView navigationListView;
NavigationListControllerImpl implements the following constructor:
#Inject
public NavigationListControllerImpl(Context ctx, EventBus bus) {
this.ctx = ctx;
this.bus = bus;
}
Error I'm getting from the Dagger 2 compiler is the following:
error: ...sidenavigation.navigationlist.NavigationListControllerImpl cannot be provided without an #Inject constructor or from an #Provides-annotated method.
...sidenavigation.NavigationDrawerFragment.navigationListController
[injected field of type: ...sidenavigation.navigationlist.NavigationListController navigationListController]
...sidenavigation.navigationlist.NavigationListModule.provideNavigationListController(...sidenavigation.navigationlist.NavigationListControllerImpl impl)
[parameter: ...sidenavigation.navigationlist.NavigationListControllerImpl impl]
Error complains about missing #Inject-annotated constructor, but it exists! If I replace implicit NavigationListControllerImpl instance creation (passing via #Provides-method parameter) with explicit (with new), dagger starts complaining about the same error but now for the presenter object which is the second entry in the same module, and so on.
All this situation looks very strange, and I'd like to hear some input from more experienced Dagger 2 users (and developers?).
Thank you in advance!
I got this same error because I forgot to expose the objects provided by the modules in the parent component to the other components that are depend on it.
Parent component example:
#Singleton
#Component(modules = {AppModule.class})
public interface AppComponent {
AppPref exposeAppPref(); /* my issue was caused by forgot this line,
the method name doesn't matter, what matters is the object type AppPref provided in the AppModule
that you want it to be available in the component that declares this component as one of its dependencies*/
}
Sample component that makes the above component as a dependency
#UserScope
#Component (dependencies = {AppComponent.class})
public interface ActivityComponent {
void inject(MainActivity activity);
}
Update:
AppModule:
...
#Provides
#Singleton
AppPref provideAppPref() {
return appPref;
}
...
The GlobalComponent and the subcomponent NavigationDrawerComponent must have different scopes. Use #Singleton for your GlobalComponent and some another scope for the subcomponent.
Otherwise, if you apply the same scope to the GlobalComponent and to the subcomponent, you must declare the modules of your subcomponent in your global component as well:
#Component(
// modules from subcomponent must be declared here also
modules = {NavigationListModule.class,
SwitcherModule.class,
NavigationDrawerModule.class,
...}
)
#Singleton
public interface GlobalComponent {
NavigationDrawerComponent plus(NavigationDrawerModule module);
}
For your use case, you can also use component dependencies. For instance:
#Component(
dependencies = GlobalComponent.class,
modules = {NavigationListModule.class,
SwitcherModule.class,
NavigationDrawerModule.class}
)
#YourOtherDaggerScope // #Singleton scope won't work here, it must be a different scope
public interface NavigationDrawerComponent extends GlobalComponent { // extend the parent component if you wish to get access to parent dependencies
NavigationDrawerFragment inject(NavigationDrawerFragment object);
}
Seems like I've figured out what was wrong with my Dagger 2 setup. It's not possible to use the same scope in both component and subcomponents. It's required to define a new scope for subcomponent. In my case I've ended up creating #Screen scope for me subcomponent.
I'd say that this is a small but very annoying defect in Dagger 2. Apparently dagger-compiler reports nice and understandable error about the same scopes in a parent component and child component if child component is extended with a parent component as dependency. But completely misleading error is reported by the compiler if parent component and child subcomponent share the same scope.
Thank you, #lukas, for giving me a hint here https://stackoverflow.com/a/30383088/808313 that led to a problem resolution.
Came accross this issue today too. For me there was a problem with the Annotation processing (on Android Studio 2.2 with gradle 2.x).
Instead of ~~apt~~ I used annotationProcessor
I used
annotationProcessor 'com.google.dagger:dagger-compiler:2.6'
and now It's working.
Came across the same issue while trying to create Subcomponents, but it seems to be fixed in Dagger 2.0.1.
Seems it is the same kinda error dagger reports for many mistakes. In my case, my target injection was expecting concrete class (Presenter) where as the module that provides presenter was returning only the interface (DemoContract.Presenter)
So changed from
#Inject
public Presenter mDemoPresenter;
to
#Inject
public DemoContract.Presenter mDemoPresenter;
and module that provides presenter looks like this:
#Module
public class DiDemoPresenterModule {
private final DemoContract.View mView;
DiDemoPresenterModule(MainActivity mView) {
this.mView = mView;
}
#Provides
public DemoContract.Presenter providesDemoPresenter(Repository repository) {
return new DemoPresenter(repository, mView);
}
}