I know you are using it quite well with your Non-UI codes in AsnycTask but I am just wondering if there is any kind of problem while using AsyntTask? I am not having any code which produce the problem. But I am just curious to know Any bad experience if you have with AsnycTask and would like to share it.
Memory Leak :
Even though activity is destroyed, AsyncTask holds the Activity's reference since it has to update UI with the callback methods.
cancelling AsyncTask :
cancelling AsyncTask using cancel() API will not make sure that task will stop immediately.
Data lose :
When screen orientation is done. Activity is destroyed and recreated, hence AsysncTask will hold invalid reference of activity and will trouble in updating UI.
Concurrent AsyncTasks: Open Asynctask.java go to line number 199, it shows you can create only 128 concurrent tasks
private static final BlockingQueue<Runnable> sPoolWorkQueue = new LinkedBlockingQueue<Runnable>(128);
Rotation: When Activity is restarted, your AsyncTask’s reference to the Activity is no longer valid, so onPostExecute() will have no effect.
Cancelling AsyncTasks: If you AsyncTask.cancel() it does not cancel your AsyncTask. It’s up to you to check whether the AsyncTask has been canceled or not.
Lifecycle: AsyncTask is not linked with Activity or Fragment, so you have to manage the cancellation of AsyncTask.
There are some workarounds to solve above issues for more details have a look at The Hidden Pitfalls of AsyncTask
I just want to share the information that if you are using Asynctask, it will keep on doing its work even of the activity does not exist.
So in case you have asynctask which starts in onCreate() of the activity, and you rotate the device. At each rotation, a new activity is created with a new instance of Asysntask. So many requests will be send over the network for same task.In this way, a lot of memory will be consumed which effects the app performance resulting in crashing it. So to deal with it Loaders(Asynctask Loaders) are used.
For more info check the video:
Loaders
Related
I have a pretty odd problem here. In a fragment, I do a process and when the process finishes I show an advert that callsback to the fragment when user clicks/dismisses the ad. The problem is that in some devices when the ad calls back to the handler (that is in the running fragment) the activity containing the fragment has been destroyed, but I need to do some more work through a runnable. So, in this case the runnable throws a NullPointerException int is run method when executed.
I could just check if the activity is still alive and run just the runnable when it is, but in the cases it is not alive I still need to continue to do the part of the job that needs to be done after the ad.
How do you handle this kind of situations? I have been thinking about the problem during some hours without finding a solution to this.
Thanks in advance.
You can use AsyncTask in this case .
AsyncTask processes are not automatically killed by the OS. AsyncTask processes run in the background and is responsible for finishing it's own job in any case. You can cancel your AsycnTask by calling cancel(true) method. This will cause subsequent calls to isCancelled() to return true. After invoking this method, onCancelled(Object) method is called instead of onPostExecute() after doInBackground() returns.
Hope it helps..
mmm the way this is asked I am not sure what you are asking, perhaps some text connectors might work, I am not sure if this is a quite basic question about state changes or a very complex one.
from what I understood:
wouldn't this be the same problem as when you flip screen? make a Bundle of the data that is restored through activity changes. This way if your activity has been Destroyed you restore it
fragments have a feature that you can use to keep instance alive across a configuration change: retainInstance
setRetainInstance(true) // false by default
Parcelable like Serializable, is an API for saving an object out to a stream of bytes. Objects may elect to implement the Parcelable interface if they are what we will call "stashable" here. Objects are stashed in Java by putting them in a Bundle, or by marking them Serializable so they can be serialized, or by implementing the Parcelable interface. Whichever way you do it, the same idea applies: you should not be using any of these tools unless your object is stashable
---or---
turn that "advert" of yours into an Alert, which wont mess with the Activity.
---or---
run the response on a different thread?
I am writing an Android app (ICS) for a tablet. The user moves from Activity A to Activity B to Activity C with the touch of a button. I want to return from Activity C to Activity A after 10 seconds. Is there some way to count to 10 without locking up Activity C?
I've succeeded with an asyncTask but if I startActivity(A) in the onPostExecute() it feels like I'm violating the guideline that an asyncTask should not mess with the UI. I've tried get() but that does lock up Activity C while it's waiting for the 10 seconds to pass.
Thanks in advance!
Assuming you have any View instance in your activity, you can use View.postDelayed() to post runnable with a given delay. In this runnable you can call Activity.finish(). You should also use View.removeCallbacks() to remove your callback in onDestroy(), to avoid your callback being called after user already navigated back from your activity.
Using AsyncTask just to count some time is just an overkill (unless you want to use AsyncTask to actually do some useful, background work). The Looper and Handler classes provide everything you need to execute any code on UI thread after a given delay. The View methods mentioned above are just convenience methods exposing the Handler functionality.
Using AsyncTask works fine as you describe. From Android Documentation:
onPostExecute(Result), invoked on the UI thread after the background computation finishes.
Since it is invoked on UI thread you should be fine.
Documentation
You can use a alarm manager for that. Set it to send a broadcast 10 seconds starting from activity a and implement a base activity for activity a b and c to receive the broadcast, after receiving the broadcast just end the current activity and start activity a with a new flag. If the current instance is activity a then ignore if not start activity a. Something like that.
As for the idle part you can update the alarm manager on every action, upon entering activity etc.
The advantage of this implementation is that you dont have to go through the hassle of having to worry about context leaks, persisting timers across activities and such. and can make use of what is already there. You can also consider using a service though.
If not you can just use the shared preference store the time to time out and check or update against it for the actions.. A simpler implementation.
Good luck.
From the Activity, I am creating a Handler to fire off my AsyncTask every 45 seconds in order to refresh the content of my ListView's DataAdapter. The AsyncTask works great and keeps the user informed on the progress through ProgressUpdates and Toast messages.
Since the thread's doInBackground is fire and forget and not re-usable, I am having to create a new instance of the AsyncTask from my Hander that is firing off every 45 seconds. The problem is when the screen is rotated and and then I get concurrent messages going off because the Hander was recreated and created a new instance of the AsyncTask, so the friendly user progress through ProgressUpdates and Toast messages is overwhelming and makes utilizing the ListView difficult.
And please don't suggest this as a solution: android:screenOrientation="portrait" is not an option.
For something that has to run so frequently, should I just be using a custom Thread and not the AsyncTask class? ToDo: Not shown, I have to update the Adapter later from the Sensor's onSensorChanged event to update bearings on for each location in the ListView, I was going to run that on a separate AsyncTask class because I don't need to notify the user everytime the device bearing has changed.
Since the AsyncThread cannot be reused, am I doing this all wrong? In short, what is the best way to have the Activity refresh the ListView and keeping off the UI thread when doing so?
The problem is when the screen is rotated and and then I get concurrent messages going off because the Hander was recreated and created a new instance of the AsyncTask.
Reason quoting from API Activity - Configuration Changes:
Unless you specify otherwise, a configuration change (such as a change in screen orientation, language, input devices, etc) will cause your current activity to be destroyed, going through the normal activity lifecycle process of onPause(), onStop(), and onDestroy() as appropriate.
So every object has a activity-scope life cycle (i.e. Handler, AsyncTask and etc. defined within your activity class) is suffered by this activity recreation. However, you can bypass this activity recreation, as stated in the later paragraph of Activity - Configuration Changes section:
In some special cases, you may want to bypass restarting of your activity based on one or more types of configuration changes. This is done with the android:configChanges attribute in its manifest. For any types of configuration changes you say that you handle there, you will receive a call to your current activity's onConfigurationChanged(Configuration) method instead of being restarted. If a configuration change involves any that you do not handle, however, the activity will still be restarted and onConfigurationChanged(Configuration) will not be called.
Not related to topic, but as a good practice, you should always destroy used object (Handler, AsyncTask and etc.) properly when activity is about to finish (i.e. in onDestroy() method).
For something that has to run so frequently, should I just be using a custom Thread and not the AsyncTask class?
AsyncTask is pretty handy but not suit for periodic task, I would use ScheduledExecutorService or TimerTask in this case, check out my answer here for sample code.
Can you please post a bit of your code ? It may be useful to understand where your problem is.
As york has pointed it out, you should probably use TimerTask. It seems that it suit better with what you are trying to do.
If it is the creation of a new instance of the Handler that create the probleme you can try something like this :
private Handler mHandler = null;
#Override
public void onCreate(Bundle _savedInstanceState) {
super.onCreate(_savedInstanceState);
setContentView(R.layout.my_layout);
if (mHandler == null) {
// TODO create your handler here
}
}
EDIT :
You can test _savedInstanceState == null too.
_savedInstanceState is used to save the state of the activity so turning the phone shouldn't be a problem anymore.
However, if you leave the activity and then go back to it, it will create a new handler (except if you instanciate it as a static variable).
If I have an AsyncTask started in an Activity by user interaction. The AsyncTask, when finished, will modify the UI and execute a Toast. Let's say that the user exits the Activity before the AsyncTask has finished. Can this cause problems as in Exceptions: I.e. could it happen that an UI element pointer goes null and that when the AsyncTask finishes it could cause runtime exceptions?
As it is now I've done a design where the Application class handles the AsyncTask and notifies the Activity through a BroadcastReceiver to do UI tasks if Activity still is around (i.e. more of an Observer pattern). Is this a "safer" design?
/ Henrik
I believe this does cause a problem. If the activity that created the AsyncTask is not around anymore, the an exception is thrown because the parent handler is not there anymore. The correct approach is to keep the reference of the AsyncTask in that activity, and capture onPause() event. In the pause event, I would cancel the AsyncTask and clean up if there is anything that needs to be cleaned up.
To answer your second question, it all depends on what is the requirement. If the requirement is for that task to still be around then yes you can attach the AsyncTask to the application. But it sounds like there is something that might be not correct here. You said if Activity still is around. If you don't need the task once the activity has disappeared then you might as well go with my original approach which is cancel the task and throw it away when the activity is paused.
Also, one final note. If you keep a reference to the activity around even after the activity has stopped, you will have a memory leak because that activity still has a reference that cannot be cleaned up until the task has completed.
This article sounds similar to what you are doing. If you really want to keep the task around then this seems like a good solution. I also found Android AsyncTask Context Terminated that might help you.
I read a lot about handling rotation in android applications, but I still have so many questions and need to much to understand.
Let me explain my problem or implementation, that I'm using now in my application.
If an activity will be opened, a get request will be sent to server. This request will be executed in a Thread (new Thread(...)) and if request was completed, activity's ui will be refreshed.
But what should I do, if the user rotate his device?
By default, the activity will be destroyed and request will be started again and start a new thread, but the thread of destroyed activity may be still running.
I guess, it's a quite wrong way, I have now.
But what is the best approach, to handle this?
Probably is the best way to forbid rotation, but what If I don't want that?!
May be it's the second part of my question:
I saw a video form Google IO. Mr. Dobjanschi suggested to use services and to store retrieved data in content provider. So, probably I can use a service for executing my requests. But should data be replaced every time the get request was completed?!
Well dont know exactly how its done, You can try saving the instance and retrieving the same when config changes with following methods:
I have read about them but haven't really implemented them yet. I hope it can give you some start.
#Override
public Object onRetainNonConfigurationInstance() {
return(myServerThread);
}
private void restoreServerFunctions() {
if (getLastNonConfigurationInstance()!=null) {
myServerThread=(Thread)getLastNonConfigurationInstance();
}
}
You can specify that the activity handles the rotation itself. This is done through adding:
android:configChanges="keyboardHidden|orientation"
in the tag of the activity inside your android manifest. You don't have to actually handle the rotation but this will tell android to not destroy your activity. The base activity class will handle all the rotating of the user interface for you and your thread will be executed correct.
A small side note: if you are doing only a small server task use AsyncTask to execute the call to the server in the background instead of creating a thread. This will minimze some of the programming effort you need to communicate the results from the thread to the activity and update your UI.
One easy way, though I've never tried it. Instead of refreshing the current UI, when the thread finishes, start a new Activity with the just downloaded content. So first, you start an Activity with a blank page (or just the page's frame), then you rotate the blank page as much as you like, then the downloading Thread spawns a new Activity, replacing the blank page Activity with the loaded content page using the current orientation.