find contours miss some objects - android

I use the following code to read through all objects that I segmented from my image which should be ordered in row and columns as semi-circle (because of segmentation and morphological processing for reducing noise):
Imgproc.Canny(srcImg, srcImg, 50, 150);
Imgcodecs.imwrite("/mnt/sdcard/DCIM/cannyImg.jpg", srcImg);//check
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(srcImg, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE, new Point(0,0));
//int index = 0;
//double maximc = Imgproc.contourArea(contours.get(0));
for (int contourIdx = 1; contourIdx < contours.size(); contourIdx++) {
double temp;
temp = Imgproc.contourArea(contours.get(contourIdx));
if (temp > 100) {
// condition to differentiate between noise and objects
Mat drawing = Mat.zeros(srcImg.size(), CvType.CV_8UC1);
Imgproc.drawContours(drawing, contours, contourIdx, new Scalar(255), -1);
Mat resultMat = new Mat();
maskImg.copyTo(resultMat, drawing);
Imgcodecs.imwrite("/mnt/sdcard/DCIM/resultImg" + contourIdx + ".jpg", resultMat);//check
}
}
however, the loop can not read important objects in my image even canny image is correct and can identify all the objects. My questions are: in which order find contours read objects? and also is there another way in Opencv to read through all objects in the image other than find contours? last question i used the size of contours to differentiate between the objects and the noise, so is this Ok or you can suggest other methods.
Any help is appreciated

Related

cluster with contours, Android, OpenCV

I try to find contours and make five cluster with it. I have found the contours with:
Imgproc.findContours(bw.clone(), contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
And I would like to use the kmeans algorithm to make the five cluster. But I don't know, the step between the findContours function and the kmeans function.
Core.kmeans(samples32f, 5, labels, criteria, 1, Core.KMEANS_PP_CENTERS, centers);
The first parameter of the kmeans function is a Mat with a float CvType and points.
How can I convert the contours to point or how must I proceed?
P.S. There are 15 contours represents 15 circle.
I solved the problem! Thanks mainactual for your tip.
I don't understood which value the first parameter of the kmeans algorithm need.
With this Tutorial I analyzed the problem and find out the right way.
Imgproc.findContours(bw.clone(), contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
Mat samples32final = new Mat(contours.size(), 2, CvType.CV_32F, new Scalar(0));
for (int j = 0 ; j<contours.size(); j++) {
Mat samples32f = new Mat((int) contours.get(j).size().height, 2, CvType.CV_32F, new Scalar(0));
for (int i = 0; i < (int) contours.get(j).size().height; i++) {
samples32f.put(i, 0, contours.get(j).get(i, 0)[0]);
samples32f.put(i, 1, contours.get(j).get(i, 0)[1]);
}
samples32f.reshape((int) contours.get(j).size().height, 2);
Mat labels = new Mat((int) contours.get(j).size().height, 2, CvType.CV_32SC1);
TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 100, 1.0);
Mat centers = new Mat();
Core.kmeans(samples32f, 1, labels, criteria, 10, Core.KMEANS_RANDOM_CENTERS, centers);
samples32final.put(j,0,centers.get(0,0)[0]);
samples32final.put(j,1,centers.get(0,1)[0]);
}
samples32final.reshape(contours.size(), 2);
Mat labels = new Mat(contours.size(), 2, CvType.CV_32SC1);
TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 100, 1.0);
Mat centers = new Mat();
Core.kmeans(samples32final, 5, labels, criteria, 10, Core.KMEANS_PP_CENTERS, centers);
In the first line the contours of the image were found. In the first for loop finds the center of each pip with cluster size 1 and store the center in a new Mat. After the for loop the center position of all pips are stored in the variable samples32final.
With this variable the center of the dice can be found with kmeans.
Sorry for the bad english...

Detecting a square object from an image using OpenCv in android [duplicate]

This might have been answered but I desperately need an answer for this. I want to find the largest square or rectangle in an image using OpenCV in Android. All of the solutions that I found are C++ and I tried converting it but it doesn't work and I do not know where I'm wrong.
private Mat findLargestRectangle(Mat original_image) {
Mat imgSource = original_image;
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY);
Imgproc.Canny(imgSource, imgSource, 100, 100);
//I don't know what to do in here
return imgSource;
}
What I am trying to accomplish in here is to create a new image that is based on the largest square found in the original image (return value Mat image).
This is what I want to happen:
1 http://img14.imageshack.us/img14/7855/s7zr.jpg
It's also okay that I just get the four points of the largest square and I think I can take it from there. But it would be better if I can just return the cropped image.
After canny
1- you need to reduce noises with gaussian blur and find all the contours
2- find and list all the contours' areas.
3- the largest contour will be nothing but the painting.
4- now use perpective transformation to transform your shape to a rectangle.
check sudoku solver examples to see the similar processing problem. (largest contour + perspective)
Took me a while to convert the C++ code to Java, but here it is :-)
Warning ! Raw code, totally not optimized and all.
I decline any liability in cases of injury or lethal accident
List<MatOfPoint> squares = new ArrayList<MatOfPoint>();
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
if (Math.random()>0.80) {
findSquares(inputFrame.rgba().clone(),squares);
}
Mat image = inputFrame.rgba();
Imgproc.drawContours(image, squares, -1, new Scalar(0,0,255));
return image;
}
int thresh = 50, N = 11;
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( Point pt1, Point pt2, Point pt0 ) {
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/Math.sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
void findSquares( Mat image, List<MatOfPoint> squares )
{
squares.clear();
Mat smallerImg=new Mat(new Size(image.width()/2, image.height()/2),image.type());
Mat gray=new Mat(image.size(),image.type());
Mat gray0=new Mat(image.size(),CvType.CV_8U);
// down-scale and upscale the image to filter out the noise
Imgproc.pyrDown(image, smallerImg, smallerImg.size());
Imgproc.pyrUp(smallerImg, image, image.size());
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
extractChannel(image, gray, c);
// try several threshold levels
for( int l = 1; l < N; l++ )
{
//Cany removed... Didn't work so well
Imgproc.threshold(gray, gray0, (l+1)*255/N, 255, Imgproc.THRESH_BINARY);
List<MatOfPoint> contours=new ArrayList<MatOfPoint>();
// find contours and store them all as a list
Imgproc.findContours(gray0, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
MatOfPoint approx=new MatOfPoint();
// test each contour
for( int i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approx = approxPolyDP(contours.get(i), Imgproc.arcLength(new MatOfPoint2f(contours.get(i).toArray()), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.toArray().length == 4 &&
Math.abs(Imgproc.contourArea(approx)) > 1000 &&
Imgproc.isContourConvex(approx) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = Math.abs(angle(approx.toArray()[j%4], approx.toArray()[j-2], approx.toArray()[j-1]));
maxCosine = Math.max(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.add(approx);
}
}
}
}
}
void extractChannel(Mat source, Mat out, int channelNum) {
List<Mat> sourceChannels=new ArrayList<Mat>();
List<Mat> outChannel=new ArrayList<Mat>();
Core.split(source, sourceChannels);
outChannel.add(new Mat(sourceChannels.get(0).size(),sourceChannels.get(0).type()));
Core.mixChannels(sourceChannels, outChannel, new MatOfInt(channelNum,0));
Core.merge(outChannel, out);
}
MatOfPoint approxPolyDP(MatOfPoint curve, double epsilon, boolean closed) {
MatOfPoint2f tempMat=new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(curve.toArray()), tempMat, epsilon, closed);
return new MatOfPoint(tempMat.toArray());
}
There are some related questions here in SO. Check them out:
OpenCV C++/Obj-C: Detecting a sheet of paper / Square Detection
How do I recognize squares in this image?
There is also an example shipped with OpenCV:
https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/cpp/squares.cpp?rev=4079
Once you have the rectangle, you can align the picture by computing the homography with the rectangle corners and applying a perspective transform.

counting objects & better way to filling holes

I am new to OpenCV and am trying to count the number of objects in an image. I have done this before using MATLAB Image Processing Toolbox and adapted the same approach in OpenCV (Android) also.
The first step was to convert an image to gray scale. Then to threshold it and then counting the number of blobs. In Matlab there is a command - "bwlabel", which gives the number of blobs. I couldn't find such thing in OpenCV (again, I am a noob in OpenCV as well as Android).
Here is my code,
//JPG to Bitmap to MAT
Bitmap i = BitmapFactory.decodeFile(imgPath + "mms.jpg");
Bitmap bmpImg = i.copy(Bitmap.Config.ARGB_8888, false);
Mat srcMat = new Mat ( bmpImg.getHeight(), bmpImg.getWidth(), CvType.CV_8UC3);
Utils.bitmapToMat(bmpImg, srcMat);
//convert to gray scale and save image
Mat gray = new Mat(srcMat.size(), CvType.CV_8UC1);
Imgproc.cvtColor(srcMat, gray, Imgproc.COLOR_RGB2GRAY,4);
//write bitmap
Boolean bool = Highgui.imwrite(imgPath + "gray.jpg", gray);
//thresholding
Mat threshed = new Mat(bmpImg.getWidth(),bmpImg.getHeight(), CvType.CV_8UC1);
Imgproc.adaptiveThreshold(gray, threshed, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 75, 5);//15, 8 were original tests. Casey was 75,10
Core.bitwise_not(threshed, threshed);
Utils.matToBitmap(threshed, bmpImg);
//write bitmap
bool = Highgui.imwrite(imgPath + "threshed.jpg", threshed);
Toast.makeText(this, "Thresholded image saved!", Toast.LENGTH_SHORT).show();
In the next step, I tried to fill the holes and letters using dilation followed by an erosion but the blobs gets attached to each other which will ultimately give a wrong count. There is a tradeoff between filling holes and getting the blobs attached to each other on tuning the parameters for dilation and erosion.
Here is the code,
//morphological operations
//dilation
Mat dilated = new Mat(bmpImg.getWidth(),bmpImg.getHeight(), CvType.CV_8UC1);
Imgproc.dilate(threshed, dilated, Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new org.opencv.core.Size (16, 16)));
Utils.matToBitmap(dilated, bmpImg);
//write bitmap
bool = Highgui.imwrite(imgPath + "dilated.jpg", dilated);
Toast.makeText(this, "Dilated image saved!", Toast.LENGTH_SHORT).show();
//erosion
Mat eroded = new Mat(bmpImg.getWidth(),bmpImg.getHeight(), CvType.CV_8UC1);
Imgproc.erode(dilated, eroded, Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new org.opencv.core.Size(15, 15)));
Utils.matToBitmap(eroded, bmpImg);
//write bitmap
bool = Highgui.imwrite(imgPath + "eroded.jpg", eroded);
Toast.makeText(this, "Eroded image saved!", Toast.LENGTH_SHORT).show();
Because sometimes my M&Ms might be just next to each other! ;)
I also tried to use Hough Circles but the result is very unreliable (tested with coin images as well as real coins)
Here is the code,
//hough circles
Mat circles = new Mat();
// parameters
int iCannyUpperThreshold = 100;
int iMinRadius = 20;
int iMaxRadius = 400;
int iAccumulator = 100;
Imgproc.HoughCircles(gray, circles, Imgproc.CV_HOUGH_GRADIENT,
1.0, gray.rows() / 8, iCannyUpperThreshold, iAccumulator,
iMinRadius, iMaxRadius);
// draw
if (circles.cols() > 0)
{
Toast.makeText(this, "Coins : " +circles.cols() , Toast.LENGTH_LONG).show();
}
else
{
Toast.makeText(this, "No coins found", Toast.LENGTH_LONG).show();
}
The problem with this approach is that the algorithm is limited to perfect circles only (AFAIK). So, it doesn't work well when I try to scan and count M&Ms or coins lying on my desk (because angle of the device changes). With this approach, sometimes I get less no. of coins detected and sometimes more (I don't get it why more??).
On scanning this image the app sometimes shows 19 coins and sometimes 38 coins counted...I know there are other features which may be detected as circles but I totally don't get it why 38..?
So my questions...
Is there a better way to fill holes without joining adjacent blobs?
How do I count the number of objects accurately? I don't want to limit my app to counting only circles with HoughCircles approach.
FYI : OpenCV-2.4.9-android-sdk. Kindly keep in mind that I am a newbie in OpenCV and Android too.
Any help is much appreciated.
Thanks & Cheers!
Jainam
So to proceed we take your threshold image which you have generated as input and further modify it. The present code is in C++ but I guess you can easily convert it into android platform
Now instead of dilation or blurring you can try flood fill
which results in
Finally now applying the contour detection algorithm algorithm we get
The code for the above is
Mat dst = imread($path to the threshold image); // image should be single channel black and white image
imshow("dst",dst);
cv::Mat mask = cv::Mat::zeros(dst.rows + 2, dst.cols + 2, CV_8U);
// A image with size greater than the present object is created
cv::floodFill(dst, mask, cv::Point(0,0), 255, 0, cv::Scalar(), cv::Scalar(), 4 + (255 << 8) + cv::FLOODFILL_MASK_ONLY);
erode(mask,mask,Mat());
// Now to remove the outer boundary
rectangle(mask,Rect(0,0,mask.cols,mask.rows), Scalar(255,255,255),2,8,0);
imshow("Mask",mask);
Mat copy;
mask.copyTo(copy);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( copy, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
vector<vector<Point> > contours_poly( contours.size() );
vector<Rect> boundRect( contours.size() );
vector<Point2f>center( contours.size() );
vector<float>Distance( contours.size() );
vector<float>radius( contours.size() );
Mat drawing = cv::Mat::zeros(mask.rows, mask.cols, CV_8U);
int num_object = 0;
for( int i = 0; i < contours.size(); i++ ){
approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
// To get rid of the smaller object and the outer rectangle created
//because of the additional mask image we enforce a lower limit on area
//to remove noise and an upper limit to remove the outer border.
if (contourArea(contours_poly[i])>(mask.rows*mask.cols/10000) && contourArea(contours_poly[i])<mask.rows*mask.cols*0.9){
boundRect[i] = boundingRect( Mat(contours_poly[i]) );
minEnclosingCircle( (Mat)contours_poly[i], center[i], radius[i] );
circle(drawing,center[i], (int)radius[i], Scalar(255,255,255), 2, 8, 0);
rectangle(drawing,boundRect[i], Scalar(255,255,255),2,8,0);
num_object++;
}
}
cout <<"No. of object detected =" <<num_object<<endl;
imshow("drawing",drawing);
waitKey(2);
char key = (char) waitKey(20);
if(key == 32){
// You can save your images here using a space
}
I hope this helps you in solving your problem
Just check it out,
Blur source.
Threshold binary inverted on gray.
Find contours, note that you should use CV_RETR_EXTERNAL as contour retrieval mode.
You can take the contours size as your object count.
Code:
Mat tmp,thr;
Mat src=imread("img.jpg",1);
blur(src,src,Size(3,3));
cvtColor(src,tmp,CV_BGR2GRAY);
threshold(tmp,thr,220,255,THRESH_BINARY_INV);
imshow("thr",thr);
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
findContours( thr, contours, hierarchy,CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE ); // Find the contours in the image
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through each contour.
{
Rect r= boundingRect(contours[i]);
rectangle(src,r, Scalar(0,0,255),2,8,0);
}
cout<<"Numeber of contour = "<<contours.size()<<endl;
imshow("src",src);
waitKey();

not able tot detect phisycal door or other big rectangle in open cv android

I wrote code to detect rectangles in open cv. And i am able to detect few object but i am not able to detect physical door or big rectangle. Please check my code and correct me if i am wrong somewhere . Another problem is this code is not able to detect rectangle constantly so when i draw rectangle it comes and go , comes and go and it looks bad. Any way to detect regularly in every frame.
Mat output= getGray(inputFrame.rgba(),inputFrame.rgba());
Imgproc.medianBlur(output, output, 5);
Imgproc.erode(output, output, new Mat());
Imgproc.dilate(output, output, new Mat());
Mat edges = new Mat();
Imgproc.Canny(output, output, 5, 50);
// Vector<MatOfPoint> vector=new Vector<MatOfPoint>();
// Imgproc.findContours(output, points, output, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
contours.clear();
Imgproc.findContours(output, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
MatOfPoint2f approxCurve = new MatOfPoint2f();
rgbImage=inputFrame.rgba();
mDrawnContours.clear();
> Blockquote
for(int i=0;i< contours.size();i++){
MatOfPoint tempContour=contours.get(i);
MatOfPoint2f newMat = new MatOfPoint2f( tempContour.toArray() );
int contourSize = (int)tempContour.total();
Imgproc.approxPolyDP(newMat, approxCurve, contourSize*0.15, true);
MatOfPoint points=new MatOfPoint(approxCurve.toArray());
if((Math.abs(Imgproc.contourArea(tempContour))<100) || !Imgproc.isContourConvex(points)){
Log.i(TAG, "::onCameraFrame:" + " too small");
appendLog("Too small");
continue;
}
else if(points.toArray().length >= 4 && points.toArray().length <= 6){
int vtc = points.toArray().length;
Vector<Double> cosList=new Vector<Double>();
for (int j = 2; j < vtc+1; j++){
cosList.add(angle(points.toArray()[j%vtc], points.toArray()[j-2], points.toArray()[j-1]));
}
double mincos = getMin(cosList);
double maxcos = getMax(cosList);
Log.i(TAG, "::onCameraFrame:" + "mincos:"+mincos+"maxcos:"+maxcos);
if (vtc == 4 && mincos >= -0.1 && maxcos <= 0.3)
{
mTotalSquare++;
Imgproc.drawContours(rgbImage, contours, i, new Scalar(0,0,255));
DrawnContours contours2=new DrawnContours();
contours2.setIndex(i);
mDrawnContours.add(contours2);
Log.i(TAG, "::onCameraFrame:" + "found");
appendLog("found");
}
else{
Log.i(TAG, "::onCameraFrame:" +" not found " +"mincos:"+mincos+"maxcos:"+maxcos);
appendLog("not found 1");
}
}
return rgbImage
Let me know if you have any questions.
I suppose, that large contours have more than 4 edges. Their contour consists of large number of short line segments (depends on approximation function parameter in line
Imgproc.approxPolyDP(newMat, approxCurve, contourSize*0.15, true);
).
And you have condition which check for edge numbers:
points.toArray().length <= 6

Android OpenCV Find Largest Square or Rectangle

This might have been answered but I desperately need an answer for this. I want to find the largest square or rectangle in an image using OpenCV in Android. All of the solutions that I found are C++ and I tried converting it but it doesn't work and I do not know where I'm wrong.
private Mat findLargestRectangle(Mat original_image) {
Mat imgSource = original_image;
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY);
Imgproc.Canny(imgSource, imgSource, 100, 100);
//I don't know what to do in here
return imgSource;
}
What I am trying to accomplish in here is to create a new image that is based on the largest square found in the original image (return value Mat image).
This is what I want to happen:
1 http://img14.imageshack.us/img14/7855/s7zr.jpg
It's also okay that I just get the four points of the largest square and I think I can take it from there. But it would be better if I can just return the cropped image.
After canny
1- you need to reduce noises with gaussian blur and find all the contours
2- find and list all the contours' areas.
3- the largest contour will be nothing but the painting.
4- now use perpective transformation to transform your shape to a rectangle.
check sudoku solver examples to see the similar processing problem. (largest contour + perspective)
Took me a while to convert the C++ code to Java, but here it is :-)
Warning ! Raw code, totally not optimized and all.
I decline any liability in cases of injury or lethal accident
List<MatOfPoint> squares = new ArrayList<MatOfPoint>();
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
if (Math.random()>0.80) {
findSquares(inputFrame.rgba().clone(),squares);
}
Mat image = inputFrame.rgba();
Imgproc.drawContours(image, squares, -1, new Scalar(0,0,255));
return image;
}
int thresh = 50, N = 11;
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( Point pt1, Point pt2, Point pt0 ) {
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/Math.sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
void findSquares( Mat image, List<MatOfPoint> squares )
{
squares.clear();
Mat smallerImg=new Mat(new Size(image.width()/2, image.height()/2),image.type());
Mat gray=new Mat(image.size(),image.type());
Mat gray0=new Mat(image.size(),CvType.CV_8U);
// down-scale and upscale the image to filter out the noise
Imgproc.pyrDown(image, smallerImg, smallerImg.size());
Imgproc.pyrUp(smallerImg, image, image.size());
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
{
extractChannel(image, gray, c);
// try several threshold levels
for( int l = 1; l < N; l++ )
{
//Cany removed... Didn't work so well
Imgproc.threshold(gray, gray0, (l+1)*255/N, 255, Imgproc.THRESH_BINARY);
List<MatOfPoint> contours=new ArrayList<MatOfPoint>();
// find contours and store them all as a list
Imgproc.findContours(gray0, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
MatOfPoint approx=new MatOfPoint();
// test each contour
for( int i = 0; i < contours.size(); i++ )
{
// approximate contour with accuracy proportional
// to the contour perimeter
approx = approxPolyDP(contours.get(i), Imgproc.arcLength(new MatOfPoint2f(contours.get(i).toArray()), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.toArray().length == 4 &&
Math.abs(Imgproc.contourArea(approx)) > 1000 &&
Imgproc.isContourConvex(approx) )
{
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
{
// find the maximum cosine of the angle between joint edges
double cosine = Math.abs(angle(approx.toArray()[j%4], approx.toArray()[j-2], approx.toArray()[j-1]));
maxCosine = Math.max(maxCosine, cosine);
}
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.add(approx);
}
}
}
}
}
void extractChannel(Mat source, Mat out, int channelNum) {
List<Mat> sourceChannels=new ArrayList<Mat>();
List<Mat> outChannel=new ArrayList<Mat>();
Core.split(source, sourceChannels);
outChannel.add(new Mat(sourceChannels.get(0).size(),sourceChannels.get(0).type()));
Core.mixChannels(sourceChannels, outChannel, new MatOfInt(channelNum,0));
Core.merge(outChannel, out);
}
MatOfPoint approxPolyDP(MatOfPoint curve, double epsilon, boolean closed) {
MatOfPoint2f tempMat=new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(curve.toArray()), tempMat, epsilon, closed);
return new MatOfPoint(tempMat.toArray());
}
There are some related questions here in SO. Check them out:
OpenCV C++/Obj-C: Detecting a sheet of paper / Square Detection
How do I recognize squares in this image?
There is also an example shipped with OpenCV:
https://code.ros.org/trac/opencv/browser/trunk/opencv/samples/cpp/squares.cpp?rev=4079
Once you have the rectangle, you can align the picture by computing the homography with the rectangle corners and applying a perspective transform.

Categories

Resources