In Kotlin, if you don't want to initialize a class property inside the constructor or in the top of the class body, you have basically these two options (from the language reference):
Lazy Initialization
lazy() is a function that takes a lambda and returns an instance of Lazy<T> which can serve as a delegate for implementing a lazy property: the first call to get() executes the lambda passed to lazy() and remembers the result, subsequent calls to get() simply return the remembered result.
Example
public class Hello {
val myLazyString: String by lazy { "Hello" }
}
So, the first call and the subsequential calls, wherever it is, to myLazyString will return Hello
Late Initialization
Normally, properties declared as having a non-null type must be initialized in the constructor. However, fairly often this is not convenient. For example, properties can be initialized through dependency injection, or in the setup method of a unit test. In this case, you cannot supply a non-null initializer in the constructor, but you still want to avoid null checks when referencing the property inside the body of a class.
To handle this case, you can mark the property with the lateinit modifier:
public class MyTest {
lateinit var subject: TestSubject
#SetUp fun setup() { subject = TestSubject() }
#Test fun test() { subject.method() }
}
The modifier can only be used on var properties declared inside the body of a class (not in the primary constructor), and only when the property does not have a custom getter or setter. The type of the property must be non-null, and it must not be a primitive type.
So, how to choose correctly between these two options, since both of them can solve the same problem?
Here are the significant differences between lateinit var and by lazy { ... } delegated property:
lazy { ... } delegate can only be used for val properties, whereas lateinit can only be applied to vars, because it can't be compiled to a final field, thus no immutability can be guaranteed;
lateinit var has a backing field which stores the value, and by lazy { ... } creates a delegate object in which the value is stored once calculated, stores the reference to the delegate instance in the class object and generates the getter for the property that works with the delegate instance. So if you need the backing field present in the class, use lateinit;
In addition to vals, lateinit cannot be used for nullable properties or Java primitive types (this is because of null used for uninitialized value);
lateinit var can be initialized from anywhere the object is seen from, e.g. from inside a framework code, and multiple initialization scenarios are possible for different objects of a single class. by lazy { ... }, in turn, defines the only initializer for the property, which can be altered only by overriding the property in a subclass. If you want your property to be initialized from outside in a way probably unknown beforehand, use lateinit.
Initialization by lazy { ... } is thread-safe by default and guarantees that the initializer is invoked at most once (but this can be altered by using another lazy overload). In the case of lateinit var, it's up to the user's code to initialize the property correctly in multi-threaded environments.
A Lazy instance can be saved, passed around and even used for multiple properties. On contrary, lateinit vars do not store any additional runtime state (only null in the field for uninitialized value).
If you hold a reference to an instance of Lazy, isInitialized() allows you to check whether it has already been initialized (and you can obtain such instance with reflection from a delegated property). To check whether a lateinit property has been initialized, you can use property::isInitialized since Kotlin 1.2.
A lambda passed to by lazy { ... } may capture references from the context where it is used into its closure.. It will then store the references and release them only once the property has been initialized. This may lead to object hierarchies, such as Android activities, not being released for too long (or ever, if the property remains accessible and is never accessed), so you should be careful about what you use inside the initializer lambda.
Also, there's another way not mentioned in the question: Delegates.notNull(), which is suitable for deferred initialization of non-null properties, including those of Java primitive types.
lateinit vs lazy
lateinit
i) Use it with mutable variable[var]
lateinit var name: String //Allowed
lateinit val name: String //Not Allowed
ii) Allowed with only non-nullable data types
lateinit var name: String //Allowed
lateinit var name: String? //Not Allowed
iii) It is a promise to compiler that the value will be initialized in future.
NOTE: If you try to access lateinit variable without initializing it then it throws UnInitializedPropertyAccessException.
lazy
i) Lazy initialization was designed to prevent unnecessary initialization of objects.
ii) Your property will not be initialized unless you use it.
iii) It is initialized only once. Next time when you use it, you get the value from cache memory.
iv) It is thread safe(It is initialized in the thread where it is used for the first time. Other threads use the same value stored in the cache).
v) The property can only be val.
vi) The property can be of any type (including primitives and nullables, which are not allowed with lateinit).
Very Short and concise Answer
lateinit: It initialize non-null properties lately
Unlike lazy initialization, lateinit allows the compiler to recognize that the value of the non-null property is not stored in the constructor stage to compile normally.
lazy Initialization
by lazy may be very useful when implementing read-only(val) properties that perform lazy-initialization in Kotlin.
by lazy { ... } performs its initializer where the defined property is first used, not its declaration.
Additionnally to hotkey's good answer, here is how I choose among the two in practice:
lateinit is for external initialisation: when you need external stuff to initialise your value by calling a method.
e.g. by calling:
private lateinit var value: MyClass
fun init(externalProperties: Any) {
value = somethingThatDependsOn(externalProperties)
}
While lazy is when it only uses dependencies internal to your object.
In addition to all of the great answers, there is a concept called lazy loading:
Lazy loading is a design pattern commonly used in computer programming to defer initialization of an object until the point at which it is needed.
Using it properly, you can reduce the loading time of your application. And Kotlin way of it's implementation is by lazy() which loads the needed value to your variable whenever it's needed.
But lateinit is used when you are sure a variable won't be null or empty and will be initialized before you use it -e.g. in onResume() method for android- and so you don't want to declare it as a nullable type.
Everything is correct above, but one of facts simple explanation LAZY----There are cases when you want to delay the creation of an instance of your object until its
first usage. This technique is known as lazy initialization or lazy instantiation. The main
purpose of lazy initialization is to boost performance and reduce your memory footprint. If
instantiating an instance of your type carries a large computational cost and the program
might end up not actually using it, you would want to delay or even avoid wasting CPU
cycles.
Diff btw lateinit and lazy
lateinit
Use only with mutable variable i.e. var and non-nullable data types
lateinit var name: String //Allowed with non-nullable
You are telling the compiler that the value will be initialized in future.
NOTE: If you try to access lateinit variable without initializing it then it throws UnInitializedPropertyAccessException.
lazy
Lazy initialization was designed to prevent unnecessary initialization of objects.
Your variable will not be initialized unless you use it.
It is initialized only once. Next time when you use it, you get the value from cache memory.
It is thread safe.
The variable can only be val and non-nullable.
Cheers :)
If you are using Spring container and you want to initialize non-nullable bean field, lateinit is better suited.
#Autowired
lateinit var myBean: MyBean
If you use an unchangable variable, then it is better to initialize with by lazy { ... } or val. In this case you can be sure that it will always be initialized when needed and at most 1 time.
If you want a non-null variable, that can change it's value, use lateinit var. In Android development you can later initialize it in such events like onCreate, onResume. Be aware, that if you call REST request and access this variable, it may lead to an exception UninitializedPropertyAccessException: lateinit property yourVariable has not been initialized, because the request can execute faster than that variable could initialize.
I use findViewById to get references to views in a custom DialogClass outside the view hierarchy. Since I want these references throughout the dialog class, and since they are not available until the call to setContentView, I use lazy field initialization in the dialog class definition:
private val balanceView : TextView? by lazy { dialog?.findViewById(R.id.balanceTextView)}
Later, in a separate function that runs after the call to setContentView, I have two commands related to balanceView:
private fun setupBalance(){
balanceView!!.visibility = View.VISIBLE
balanceView.text = presentation.balance
}
I expected the second command to compile since we are ensuring balanceView is not null in the first command. However, the compiler underlines the second command with this message:
Smart cast to 'TextView' is impossible, because 'balanceView' is a property that has open or custom getter
I was wondering how to interpret this message - to my knowledge the lazy keyword doesn't make a variable open.
The use of a property delegate like lazy means it has a custom getter. A custom getter prevents the compiler from being able to ensure that the value returned by the property will be the same in your two consecutive calls, so it cannot smart-cast.
Since balanceView is nullable, you shouldn't be using !! either, or your app will crash when balanceView is null. The correct way to write your function (if you don't know if balanceView is currently null) would be like this:
private fun setupBalance(){
balanceView?.apply {
visibility = View.VISIBLE
text = presentation.balance
}
}
If there's no chance of it being null, don't use a nullable property, and then you won't have to worry about null-safe calls and smart-casting. But you seem to also have a nullable dialog that it is dependent on. I don't know what's going on higher-up-stream, so I can't help with that.
This is simple question. In Java you can create String variable or couple of variables without adding any value to it. This is used at start of the class before onCreate() is called in Activity. I've used lateinit property in Kotlin to achieve that, but now I have a problem with changing visibility of RecyclerView. It will throw exception "lateinit property recyclerView has not been initialized".
Is there any way how to know if property is initialized? This is called at start of the parent activity in Fragment (hide recyclerView and show ProgressBar till data are binded to recyclerView).
In Java you can create String variable or couple of variables without adding any value to it
Actually in that case it is implicitly declared null. Kotlin does not do that, because of its nullability mechanism. You must explicitly declare a variable nullable to allow null:
var str: String // does not work
var str: String? // does not work
var str: String? = null // works
Also see this answer.
Your other option indeed is to mark it lateinit:
lateinit var str: String // works
If you need to make a check to see if it is initialized before using it, you use
if (::str.isInitialized)
But really you should avoid this check and just make sure it is initialized before using it.
If you need to get your UI element in Kotlin, you do not need to create variable and initialise it by using findViewById anymore (though you can). Use kotlin view binding, which works pretty well.
https://kotlinlang.org/docs/tutorials/android-plugin.html#view-binding
I am writing a Kotlin application, I've been studying this language for a little bit and I noticed that to create a variable you have to explicitly define if it can be null and then you use the ? operator.
Now, my question. Sometimes I have to define a global variable (a Fragment in this case), so I need to make it null, because I cannot initialize it yet
In java I don't have this problem because the first thing I do after declaring it is initializing in the onCreate() like this
TurboFragment fragment = null;
#Override
public void onCreate(Bundle savedInstanceState) {
...
fragment = adapter.getCurrentFragment();
}
And then I can use it without syntax problems
In Kotlin is different, because I have to do like that
private var fragment: TurboFragment? = null
override fun onCreate(savedInstanceState: Bundle?) {
...
fragment = adapter!!.currentFragment
fragment!!.foo()
var x = fragment!!.sampleInt
}
Now, every time I call an instance of fragment i have to use the null-safe !! operator. This makes my code a mess, because for every line I have at least one !! operator and it looks really unclear if it's so frequent, especially if you have 5 or more variables like that.
Is there a way to simplify the code or the nature of this language is like that?
Consider using Late-Initialized Properties. They're intended for your use-case.
private lateinit var fragment: TurboFragment
However, you should keep in mind that accessing a lateinit property before it has been initialized throws an exception. That means you should use them only if you are absolutely sure, they will be initialized.
print(fragment) // UninitializedPropertyAccessException is thrown
In the last year I've become a mobile developer and a functional programming admirer.
In each of the mobile arenas there are components with lifecycle methods that make up the meat of the app. The following will use Android and Kotlin as examples, but the same applies to iOS and Swift.
In Android, there are Activity's with lifecycle methods like onCreate(). You might also define a function, onButtonClicked(), which will do exactly what the name describes.
For the purposes of the question, let's say there's a variable defined in onCreate() that is used in a button click handler onButtonClickedPrintMessageLength() (This is usually the case - onCreate() is essentially Activity's setup method).
The example class would look like this:
class ExampleActivity: Activity() {
var savedStateMessage: String? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
savedStateMessage = "Hello World!"
}
fun onButtonClickedPrintMessageLength() {
System.out.println(savedStateMessage?.length)
}
}
Notice the declaration of savedStateMessage as a String? (nullable string) and the use of ?. (null safe call). These are required because the compiler cant guarantee that onCreate() will be called before onButtonClickedPrintMessageLength(). As developers though, we know that onCreate will always be called first* **.
My question is how can I tell the compiler about the guaranteed order of these methods and eliminate the null checking behavior?
* I suppose it's possible to new up our ExampleActivity and call onButtonClickedPrintMessageLength() directly, thus sidestepping the Android framework and lifecycle methods, but the compiler/JVM would likely run into an error before anything interesting happened.
** The guarantee that onCreate is called first is provided by the Android framework, which is an external source of truth and might break/function differently in the future. Seeing that all Android apps are based on this source of truth though, I believe it's safe to trust.
Although this won't answer your actual question, in Kotlin you can use lateinit to tell the compiler that you'll initialize a var at a later point in time:
lateinit var savedStateMessage: String
You'll get a very specific UninitializedPropertyAccessException if you try to use this variable before initializing it. This feature is useful in use cases like JUnit, where you'd usually initialize variables in #Before-annotated method, and Android Activitys, where you don't have access to the constructor and initialize stuff in onCreate().
As mentioned in another answer, lateinit is available as an option to defer initialization to a later point in a guaranteed lifecycle. An alternative is to use a delegate:
var savedStateMessage: String by Delegates.notNull()
Which is equivalent, in that it will report an error if you access the variable before initializing it.
In Swift this is where you would use an implicitly-unwrapped Optional:
class Example: CustomStringConvertible {
var savedStateMessage: String! // implicitly-unwrapped Optional<String>
var description: String { return savedStateMessage }
init() {
savedStateMessage = "Hello World!"
}
}
print(Example()) // => "Hello World!\n"
By using the operator ! at the end of String in the second line of the example you are promising that the variable will be set before it can be used. This is accomplished in the init method of the example. It's still an Optional but code can treat it as a String since it will be automatically unwrapped before each use. You must take care that the variable is never set to nil when it might be accessed or a runtime exception may be generated.