I have two questions regarding Android memory optimization:
Which is more memory expensive in Android, to use a global field or local field?
Dependency injection with dagger- is it better to use objects (services, view models.. ) in an #applicationScope or #activityScope
Local variables are stored on the stack and when the function is finished, the local variables are gone as well. Global variables always exist and use their memory during the life time of the entire program. Its always better to declare a variable nearest to where it's used. So local variables are to be preferred.
About dagger 2 custom scope, the instances scoped in #ApplicationScope lives as long as Application object and #ActivityScope keeps references as long as Activity exists. So the objects should be under the scopes in which it is required. If it is required only in the activity or its hosted fragments use #ActivityScope or if you need the singleton object in an application scope define it #ApplicationScope.
Hope this helped you.
Related
I found the answer for Kotlin Lazy objects, using isInitialized() here: Kotlin: Check if lazy val has been initialised
But seems like dagger.Lazy doesn't have the same public method.
This is how I lazily inject using Dagger:
#Inject internal lateinit var someService: dagger.Lazy<SomeService>
How to check if someService is already initialized without calling someService.get() which will initialize it? Other than introducing a boolean flag and keep track of it ourselves..
Thanks!
There isn't a way to check; Lazy only has one method, get, making it a functional interface or "Single Abstract Method (SAM)" interface much like JSR330's Provider, Guava's Supplier, and JDK8 Supplier.
This abstraction is important, because in Dagger the definition of Lazy is more complicated and there is more than one implementation. For scoped bindings, the internal InstanceFactory itself implements Lazy, so the built in Provider<Lazy<T>> available for each T in the graph can be implemented using a class ProviderOfLazy that can simply return the internal Provider or InstanceFactory rather than creating a new wrapper instance. With that in mind, the instance of Lazy you interact with might be a shared one, so a hypothetical isInitialized might be ambiguous: Does it mark that the scoped binding was ever accessed, or just the local Lazy injection point you requested? Would that behavior change based on whether you mark the binding scoped or not in a faraway Module file? You could also imagine an implementation where every Lazy injection got its own instance, and each would locally track whether it had ever had its get called regardless of scoping. This is in contrast to Kotlin's Lazy, in which each instance wraps exactly one initializer function and consequently has less ambiguity.
Also, Kotlin's Lazy has multiple synchronization modes from which you can select, some of which have undefined behavior when called concurrently. isInitialized is never synchronized in any of those modes, so in a concurrent environment you might receive false while the value is in mid-construction, or it may even be fully constructed on a different thread and the value is simply not yet visible from the thread calling isInitialized.
If you need to be able to check on a Lazy-like status, you'll need to specify how wide you care about construction and how thread-safe you want the result to be, which is custom enough to warrant your own implementation.
I was wondering if someone could either point me to documentation to / clarify when to create or destroy a room database instance. Also how you would effectively open / close it ?
If I have a RoomDatabase object that gets injected via dagger to a presenter is that cool and then I just access various Daos? I'm worried about having the object lingering and taking up memory.
Instead of Injecting the RoomDatabase into your presenter you could Inject a DataManager Singleton class.
This DataManager can hold your WeakReferences to your DAOs . Based on when you try to access the data, first check if you have it in memory pass it on to the presenter, if not you can then Lazily access the RoomDB to load data into memory and then pass on to the presenter.
In this way, there is a Single Source of Truth that accesses/manages your data.
I’m new to Dagger 2. I have this scenario, I wan't to inject an object across my app (in presenters, in api)
I do not have a way to provide it initially. It is not created till after authentication at some stage in my app.
From the documentation http://google.github.io/dagger/
I see Lazy loading might be a way to solve this e.g
#Inject
Lazy<Grinder> lazyGrinder;
and then get the value like this using:
lazyGrinder.get().grind();
My questions are:
Can I safely swap the object after this with a new one?
Are there any other recommended ways to do this?
Thanks
This isn't a good match for Lazy. Lazy is a great way to delay expensive object initialization, but it implies some semantics that you don't want or need, particularly regarding the "safely swap" behavior you want.
To put it simply, Lazy is a Provider wrapper that memoizes locally:
If you never call get, Dagger never creates the object in question.
The first call to get creates and stores the object instance.
The second call to get returns the same instance, and so on forever, regardless of whether the object was marked as Singleton.
This makes Lazy an excellent choice for an expensive object that would otherwise be a field (but may never be used). However, if the reference is likely to change (as your will), Lazy will simply be confusing: It will store the value at first use and never locally update, so multiple out-of-date copies might be floating around in your application regardless of what the "right" value is at any given time.
To borrow the use of Grinder from your example, better solutions include:
Using a #Provides method that returns a field in a Module, which can be updated later. You'll need to inject Provider<Grinder> for every long-lived object instance, because injected references to Grinder alone won't update. This still might be the best bet if you have a lot of short-lived objects.
The reference is implicitly singleton, but is not annotated as such, because you're controlling the instance yourself. Dagger will call your getGrinder method frequently.
#Module public class YourModule {
private Grinder grinder;
public void setGrinder(Grinder grinder) {
this.grinder = grinder;
}
#Provides public Grinder getGrinder() {
return grinder;
}
}
/* elsewhere */
YourModule module = new YourModule();
YourComponent component = DaggerYourComponent.builder()
.yourModule(module)
.build();
/* ... */
module.setGrinder(latestAndGreatestGrinder);
As EpicPandaForce mentioned in the comments, create/bind a singleton GrinderHolder, GrinderController, or AtomicReference object that provides the current instance and allows for updating. That way it's impossible to inject a Grinder directly, but easy and obvious to inject the object that fetches the current correct Grinder. If your singleton GrinderHolder implementation doesn't create the Grinder until the first time you ask for it, then you have effectively created a Lazy singleton on your own.
If you aren't able to provide the object at the time of Component creation, don't add it to your Component graph! That is asking for confusing graph dependencies and inconsistency. A better solution to what you are considering is a #Subcomponent approach, which allows you to create a new component which inherits the dependencies from the parent, but also adds new one. Here's an example:
#Component
interface RegularComponent {
#AppInstanceId String appInstanceId(); // unique per app install; not related to logging in
AuthenticatedComponent newAuthenticatedComponent();
}
#Subcomponent
interface AuthenticatedComponent {
Set<Friend> friends();
#AccountId String accountId();
}
Here, the #AccountId in the subcomponent could use the appInstanceId to provide the account ID (if it needed to) since the Subcomponent shares dependencies with its parent component.
If you need to supply state to your modules for the subcomponent (with the accountId, auth token, etc) feel free to pass it in as a parameter to the #Module and store it in a private final field. You can read more on how to supply subcomponent modules in the documentation.
There are many questions and answers on how to implement a global variable in Android/Java.
So it seems one can either implement a singleton or use a data class itself with static variables.
I am about to start a larger project and would like to start on the right foot.
I am just not sure which one to use.
Pro singleton/con Data Class
supposedly "cleaner" way (but I really don't know why)
ensures that there is really always just one representation
creates a new instance should the old one be "cleaned away" (whenever this may happen?)
Con singleton/pro Data Class
not recommendet by some (but did not find convincng reasons)
ensures that there is only one representation by design
very easy to access just by writing MyDataClass.x (vs accessing singleton requires getting access to it first somehow)
no need to pass it as a parameter
So in summary I tend to use DataClass but I am unsure because I read that this is supposedly not good programming style.
I like to add
the data this global object has to hold is quite big, more than 30k strings/keys. And this should not be cleaned at any stage so that when the app return it may crash because of that - as I read in other places eg Singletons vs. Application Context in Android? (the 3rd answer)
it's not a web application, I use only one classloader
it is multithread but only one thread is actually accessing this data
one may certainly also use this approach How to declare global variables in Android?, but isn't an ObjectClass just easier to use and access in this case?
And checking this http://developer.android.com/resources/faq/framework.html, esp under "Persistent Objects", implies that there is no real advantage for on or the other in those cases anyway.
Many thanks
Best way to implement singleton is to use enum.
public enum Singleton
{
INSTANCE;
public void someMethod()
{
// your code here
}
}
For more details you can read Effective Java (2nd Edition)
First of all: There's not much difference between a class with public static member variables and a singleton class. A lot of developers prefer the singleton pattern because the code looks more natural and more Java. E.g. Singleton.Data looks like a constant access and Singleton.getData() looks like you're accessing some kind of static data.
Personally I use the static Application pattern: See Accessing resources without an Activity or Context reference
You can use onCreate to setup any kind of static data or even other singletons. E.g. I prefer to setup a singleton SQLite database like that and access it then via App.getDb(). You can use this pattern to access the application context or resources.
While using static data you should think about memory leeks. I would recommend to take a look at this article then.
I'm developing an app that has a DataManager class, which holds an ArrayList<Object[]>. As this ArrayList needs to be used within other classes, I am wondering what would be the most efficient and fastest way of accessing this list, considering this application will be running on the Android platform.
A) create a public static ArrayList<Object[]> data in the DataManager class and reference it within other classes through DataManager.data
B) create a public ArrayList<Object[]> getData method within the DataManager class and have methods within other classes create local variable ArrayList<Object[]> data = mDataManager.getData() for temporary use.
C) ..?
It seems to me B has more overhead due to object creation. Also I read static is faster than non-static?
Option B does not increase memory use, since you will only have one ArrayList object (all the objects that use it just hold a simple reference, not a copy). The objects that use the ArrayList could also store this reference as an instance variable, instead of requesting it from the manager class each time it is needed.
I read somewhere that access to instance variables is slightly faster than accessing class (static) variables, but I don't have the link to the source.
The difference in performance is not likely to be meaningful. However, Option B gives you better encapsulation.