I'm trying to change my app from having no design pattern to using MVP.
Originally I had the following code:
override fun onCreateInputView(): View {
//favoritesData is an instance variable, same with "Gson", "parser", "favorites", and "stringArrayListType"
favoritesData = File(filesDir, "favorites_data.json")
if (favoritesData.exists()) {
favorites = Gson.fromJson(parser.parse(FileReader(favoritesData)), stringArrayListType)
}
}
and
fun updateFavoritesFile() {
favoritesData.writeText(Gson.toJson(favorites))
}
After trying to use MVP I changed the code to:
class AnimeFaceKeyboardPresenter(val view : AnimeFaceKeyboardView, private val model : KeyboardModel = KeyboardModel()) : Presenter {
override fun onCreateInputView() {
model.favorites = view.loadFavoritesFile()
//At some point, call view.updateFavoritesFile(arrayListOf("test","test2"))
}
override fun onStartInputView() {
}
}
and the code in the activity itself to:
override fun loadFavoritesFile() : ArrayList<String> {
val favoritesData = File(filesDir, favoritesFileName)
var favorites = ArrayList<String>()
//"favorites" is no longer an instance variable
if (favoritesData.exists()) {
favorites = Gson.fromJson(parser.parse(FileReader(favoritesData)), stringArrayListType)
}
return favorites
}
override fun updateFavoritesFile(favorites: ArrayList<String>) {
File(filesDir, favoritesFileName).writeText(Gson.toJson(favorites))
}
override fun onCreateInputView(): View {
super.onCreateInputView()
presenter = AnimeFaceKeyboardPresenter(this)
presenter.onCreateInputView()
}
I'm not sure if I'm using MVP correctly, but if I am, how would I go about testing this code. For example - writing a test that calls updateFavoritesFile(arrayListOf("test1","test2")) and uses loadFavoritesFile() to check if the contents is as expected.
Well, you might want to relocate your file read and write to your model (they are associated with data which doesn't really belong in your view).
Then your test consists of instantiating your model object, and testing the methods which can be done without the view and presenter (simplifying the tests).
I would be very tempted to abstract your file as some form of "Repository" object that knows how to read and write strings (but you don't care where or how). You would pass the repository object to your model as a construction property. The advantage of this is that you can create a mock or fake Repository object which you can use to "feed" test data and examine written data, making testing that part of your model a little easier.
Don't forget, your view shouldn't have direct access to your model under MVP .. that would me more like MVC (one of the very few differences between MVP and MVC).
Related
I know this is a very documented topic, but I couldn't find a way to implement it in my project, even after spending hours trying to figure it out.
My root problem is that I have a RecyclerView with an Adapter whose content isn't updating as I'd like. I'm a beginner in Android, so I didn't implement any MVVM or such architecture, and my project only contains a repository, fetching data from Firebase Database, and passing it to a list of ShowModel, a copy of said list being used in my Adapter to display my shows (In order to filter/sort them without modifying the list with all shows).
However, when adding a show to the database from another Activity, my Adapter isn't displaying the newly added show (as detailed here)
I was told to use LiveData and ViewModel, but even though I started understanding how it works after spending time researching it, I don't fully get how I should use it in order to implement it in my project.
Currently I have the following classes:
The Adapter:
class ShowAdapter(private val context: MainActivity, private val layoutId: Int, private val textNoResult: TextView?) : RecyclerView.Adapter<ShowAdapter.ViewHolder>(), Filterable {
var displayList = ArrayList(showList)
class ViewHolder(view : View) : RecyclerView.ViewHolder(view){
val showName: TextView = view.findViewById(R.id.show_name)
val showMenuIcon: ImageView = view.findViewById(R.id.menu_icon)
}
#SuppressLint("NewApi")
override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ViewHolder {
val view = LayoutInflater.from(parent.context).inflate(layoutId, parent, false)
return ViewHolder(view)
}
#SuppressLint("NewApi", "WeekBasedYear")
override fun onBindViewHolder(holder: ViewHolder, position: Int) {
val currentShow = displayList[position]
val index = holder.adapterPosition
holder.showName.text = currentShow.name
holder.itemView.setOnClickListener{ // Display show content
val intent = Intent(context, DetailsActivity::class.java)
intent.putExtra("position", index)
startActivity(context, intent, null)
}
holder.showMenuIcon.setOnClickListener{
val popupMenu = PopupMenu(context, it)
popupMenu.menuInflater.inflate(R.menu.show_management_menu, popupMenu.menu)
popupMenu.show()
popupMenu.setOnMenuItemClickListener {
when(it.itemId){
R.id.edit -> { // Edit show
val intent = Intent(context, AddShowActivity::class.java)
intent.putExtra("position", index)
startActivity(context, intent, null)
return#setOnMenuItemClickListener true
}
R.id.delete -> { // Delete show
val repo = ShowRepository()
repo.deleteShow(currentShow)
displayList.remove(currentShow)
notifyItemRemoved(index)
return#setOnMenuItemClickListener true
}
else -> false
}
}
}
}
override fun getItemCount(): Int = displayList.size
// Sorting/Filtering methods
}
The fragment displaying the adapter:
class HomeFragment : Fragment() {
private lateinit var context: MainActivity
private lateinit var verticalRecyclerView: RecyclerView
private lateinit var buttonAddShow: Button
private lateinit var showsAdapter: ShowAdapter
override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?, savedInstanceState: Bundle?): View? {
val view = inflater.inflate(R.layout.fragment_home, container, false)
context = getContext() as MainActivity
buttonAddShow = view.findViewById(R.id.home_button_add_show)
buttonAddShow.setOnClickListener{ // Starts activity to add a show
startActivity(Intent(context, AddShowActivity::class.java))
}
verticalRecyclerView = view.findViewById(R.id.home_recycler_view)
showsAdapter = ShowAdapter(context, R.layout.item_show, null)
verticalRecyclerView.adapter = showsAdapter
return view
}
}
The MainActivity:
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
loadFragment(HomeFragment())
}
private fun loadFragment(fragment: Fragment){
val repo = ShowRepository()
if(showsListener != null) databaseRef.removeEventListener(showsListener!!)
repo.updateData{
val transaction = supportFragmentManager.beginTransaction()
transaction.replace(R.id.fragment_container, fragment)
transaction.addToBackStack(null)
if(supportFragmentManager.isStateSaved)transaction.commitAllowingStateLoss()
else transaction.commit()
}
}
}
The repository:
class ShowRepository {
object Singleton{
val databaseRef = FirebaseDatabase.getInstance().getReference("shows")
val showList = arrayListOf<ShowModel>()
var showsListener: ValueEventListener? = null
}
fun updateData(callback: () -> Unit){
showsListener = databaseRef.addValueEventListener(object : ValueEventListener {
override fun onDataChange(snapshot: DataSnapshot) {
showList.clear()
for(ds in snapshot.children){
val show = ds.getValue(ShowModel::class.java)
if(show != null) showList.add(show)
}
callback()
}
override fun onCancelled(p0: DatabaseError) { }
})
}
fun insertShow(show: ShowModel){
databaseRef.child(show.id).setValue(show)
}
fun deleteShow(show: ShowModel){
databaseRef.child(show.id).removeValue()
}
}
From what I understand of LiveData and ViewModel, what I should do is creating a ShowViewModel containing a MutableLiveData<List<ShowModel>> containing the shows, and then observe it in my HomeFragment and update the adapter depending on the changes happening. However, everytime I start something to implement it, I encounter a situation where I'm lost and don't know what I should do, which leads me back to square one once again. I've been trying this for more than a week without progressing even a little bit, and that's why I'm here, hoping for some insight.
Sorry for the silly question and the absurd amount of informations, and hoping someone will be able to help me understand what I do wrong/should do.
(this ended up longer than I meant it to be - hope it's not too much! There's a lot to learn, but you don't have to make it super complicated at first)
Broadly, working backwards, it should go like this:
Adapter
displays whatever the Fragment tells it to (some kind of setData function that updates its internal list and refreshes)
passes events to the Fragment (deleteItem(item), showDetails(item) etc.) - don't have the Adapter doing things like starting Activites, that's not its responsibility
Fragment
grabs a reference to any ViewModels (only certain components like Fragments and Activities can actually "own" them)
observes any LiveData (or collects Flows if you're doing it that way) on the VM, and updates stuff in the UI in response
e.g. model.shows.observe(viewLifecycleOwner) { shows -> adapter.setData(shows) }
handles UI events and calls methods on the VM in response, e.g. click listeners, events from the Adapter
ViewModel
acts as a go-between for the UI (the Fragment) and the data layer (the repository)
exposes methods for handling events like deleting items, interacts with the data layer as required (e.g. calling the appropriate delete function)
exposes data state for the UI to observe, so it can react to changes/updates (e.g. a LiveData containing the current list of shows that the data layer has provided)
That's the basic setup - the VM exposes data which the UI layer observes and reacts to, by displaying it. The UI layer also produces events (usually down to user interaction) which are passed to the VM. You can read more about this general approach in this guide about app architecture - it's worth reading because not only is it recommended as a way to build apps, a lot of the components you use in modern Android are designed with this kind of approach in mind (like the reactive model of wiring stuff up).
You could handle the Adapter events like this:
// in your Adapter
var itemDeletedListener: ((Item) -> Unit)? = null
// when the delete event happens for an item
itemDeletedListener?.invoke(item)
// in your Fragment
adapter.itemDeletedListener = { viewModel.deleteItem(it) }
which is easier than implementing an interface, and lets you wire up your Adapter similar to doing setOnClickListener on a button. Notice we're passing the actual Item object here instead of a list index - generally this is easier to work with, you don't need to maintain multiple copies of a list just so you can look up an index given to you by something else. Passing a unique ID can make sense though, especially if you're working with a database! But usually the object itself is more useful and consistent
The data layer is the tricky bit - the ViewModel needs to communicate with that to get the current state. Say you delete an item - you then need to get the current, updated list of shows. You have three approaches:
Call the delete function, immediately after fetch the current data, and set it on the appropriate LiveData
This can work, but it's not very reactive - you're doing one action, then immediately doing another because you know your data is stale. It would be better if the new data just arrived automatically and you could react to that by pushing it out. The other issue is that calling the delete function might not have an immediate effect - if you fetch the current data, nothing might have changed yet. It's better if the data layer is responsible for announcing updates.
This is the simplest approach though, and probably a good start! You could run this task in a coroutine (viewModelScope.launch { // delete and fetch and update LiveData }) so any slowness doesn't block the current thread.
Have the data layer's functions return the current, updated data that results
Similar to above, you're just sort of pushing the fetching into the data layer. This requires all those functions to be written to return the current state, which could take a while! And depending on what data you want, this might be impossible - if you have an active query on some data, how does the function know what specific data to return?
Make the ViewModel observe the data it wants, so when the data layer updates, you get the results automatically
This is the recommended reactive approach - again it's that two-way idea. The VM calling a function on the data layer is completely separate from the VM receiving new data. One thing just happens as a natural consequence of the other, they don't need to be tied together. You just need to wire them up right!
How do you actually do that though? If you're working with something like Room, that's already baked in. Queries can return async data providers like LiveData or Flows - your VM just needs to observe those and expose the results, or just expose them directly. That way, when a table is updated, any queries (like the current shows) push a new value, and the observers receive it and do whatever they need to do, like telling the Adapter to display the data. It all Just Works once it's wired up.
Since you have your own repo, you need to expose your own data sources. You could have a currentShows LiveData or (probably preferably) the flow equivalent, StateFlow. When the repo initialises, and when any data is changed, it updates that currentShows data. Anything observing that (e.g. the VM, the Fragment through a LiveData/Flow that the VM exposes) will automatically get the new values. So broadly:
// Repo
// this setup is exactly the same as your typical LiveData, except you need an initial value
private val _currentShows = MutableStateFlow<List<Show>>(emptyList()) // or whatever default
val currentShows: StateFlow<List<Show>> = _currentShows
fun deleteItem(item: Item) {
// do the deletion
// get the updated show list
_currentShows.value = updatedShowList
}
// ViewModel
// one way of doing things - you have a lot of options! This literally just exposes
// the state from the data layer, and turns it into a LiveData (if you want that)
val currentShows = repo.currentShows.asLiveData()
// Fragment
// wire things up so you handle new data as it arrives
viewModel.currentShows.observe(viewLifecycleOwner) { shows -> adapter.setData(shows) }
That's basically it. I've skimmed over a lot because honestly, there's a lot to learn with this - especially about Flows and coroutines if you're not already familiar with those. But hopefully that gives you an overview of the general idea, and don't be afraid to take shortcuts (like just updating your data in the ViewModel by setting its LiveData values) while you're learning and getting the hang of it. Definitely give that app architecture guide a read, and also the guides for ViewModels and LiveData. It'll start to click when you get the general idea!
Am learning android kotlin follow this:
https://developer.android.com/topic/libraries/architecture/viewmodel#kotlin
class MyViewModel : ViewModel() {
private val users: MutableLiveData<List<User>> by lazy {
MutableLiveData<List<User>>().also {
loadUsers(it)
}
}
fun getUsers(): LiveData<List<User>> {
return users
}
private fun loadUsers() {
// Do an asynchronous operation to fetch users.
}
}
Dont know how to write the fun loadUsers()
Here is my User:
class User {
constructor(name: String?) {
this.name = name
}
var name:String? = null
}
If dont use the keyword 'also' , i know how to do it.
But if use 'also' , it seems not work.
Here is how i try to write the fun loadUsers:
private fun loadUsers( it: MutableLiveData<List<User>>){
val users: MutableList<User> = ArrayList()
for (i in 0..9) {
users.add(User("name$i"))
}
it = MutableLiveData<List<User>>(users)
}
Error tips near it : Val cant be ressigned
Part 1: According to the Kotlin documentation, also provides the object in question to the function block as a this parameter. So, every function call and property object you access is implied to refer to your MutableLiveData<List<User>>() object. also returns this from the function block when you are done.
Thus, another way of writing your MutableLiveData<> would be like this:
val users = MutableLiveData<List<User>>()
users.loadUsers()
Part 2: As far as how to implement loadUsers(), that is a separate issue (your question is not clear). You can use Retrofit + RxJava to load the data asynchronously, and that operation is totally outside of the realm of ViewModel or also.
Part 3: With your approach, you have conflicting things going on. Instead of doing a loadUsers() from your lazy {} operation, I would remove your lazy {} operation and create a MutableLiveData<> directly. Then, you can load users later on and update the users property any time new data is loaded. Here is a similar example I worked on a while ago. It uses state flows, but the idea is similar. Also use a data class to model the User instead of a regular class. Another example.
It is solved change to code:
private fun loadUsers( it: MutableLiveData<List<User>>){
val users: MutableList<User> = ArrayList()
for (i in 0..9) {
users.add(User("name$i"))
}
it.value = users
}
it can't be reassigned , but it.value could .
it is a known issue that ListAdapter (actually the AsyncListDiffer from its implementation) does not update the list if the new list only has modified items but has the same instance. The updates do not work on new instance list either if you use the same objects inside.
For all of this to work, you have to create a hard copy of the entire list and objects inside.
Easiest way to achieve this:
items.toMutableList().map { it.copy() }
But I am facing a rather weird issue. I have a parse function in my ViewModel that finally posts the items.toMutableList().map { it.copy() } to the LiveData and gets observes in the fragment. Even with the hard copy, DiffUtil does not work. If I move the hard copy inside the fragment, then it works.
To get this easier, if I do this:
IN VIEW MODEL:
[ ... ] parse stuff here
items.toMutableList().map { it.copy() }
restaurants.postValue(items)
IN FRAGMENT:
restaurants.observe(viewLifecycleOwner, Observer { items ->
adapter.submitList(items)
... then, it doesn't work. But if I do this:
IN VIEW MODEL:
[ ... ] parse stuff here
restaurants.postValue(items)
IN FRAGMENT:
restaurants.observe(viewLifecycleOwner, Observer { items ->
adapter.submitList(items.toMutableList().map { it.copy() })
... then it works.
Can anybody explain why this doesn't work?
In the mean time, I have opened an issue on the Google Issue Tracker because maybe they will fix the AsyncListDiffer not updating same instance lists or items. It defeats the purpose of the new adapter. The AsyncListDiffer SHOULD ALWAYS accept same instance lists or items, and fully update using the diff logic that the user customises in the adapter.
I made a quick sample using DiffUtil.Callback and ListAdapter<T, K> (so I called submitList(...) on the adapter), and had no issues.
Then I modified the adapter to be a normal RecyclerView.Adapter and constructed an AsyncDiffUtil inside of it (using the same DiffUtil.Callback from above).
The architecture is:
Activity -> Fragment (contains RecyclerView).
Adapter
ViewModel
"Fake Repository" that simply holds a val source: MutableList<Thing> = mutableListOf()
Model
I've created a Thing object: data class Thing(val name: String = "", val age: Int = 0).
For readability I added typealias Things = List<Thing> (less typing). ;)
Repository
It's fake in the sense that items are created like:
private fun makeThings(total: Int = 20): List<Thing> {
val things: MutableList<Thing> = mutableListOf()
for (i in 1..total) {
things.add(Thing("Name: $i", age = i + 18))
}
return things
}
But the "source" is a mutableList of (the typealias).
The other thing the repo can do is "simulate" a modification on a random item. I simply create a new data class instance, since it's obviously all immutable data types (as they should be). Remember this is just simulating a real change that may have come from an API or DB.
fun modifyItemAt(pos: Int = 0) {
if (source.isEmpty() || source.size <= pos) return
val thing = source[pos]
val newAge = thing.age + 1
val newThing = Thing("Name: $newAge", newAge)
source.removeAt(pos)
source.add(pos, newThing)
}
ViewModel
Nothing fancy here, it talks and holds the reference to the ThingsRepository, and exposes a LiveData:
private val _state = MutableLiveData<ThingsState>(ThingsState.Empty)
val state: LiveData<ThingsState> = _state
And the "state" is:
sealed class ThingsState {
object Empty : ThingsState()
object Loading : ThingsState()
data class Loaded(val things: Things) : ThingsState()
}
The viewModel has two public methods (Aside from the val state):
fun fetchData() {
viewModelScope.launch(Dispatchers.IO) {
_state.postValue(ThingsState.Loaded(repository.fetchAllTheThings()))
}
}
fun modifyData(atPosition: Int) {
repository.modifyItemAt(atPosition)
fetchData()
}
Nothing special, just a way to modify a random item by position (remember this is just a quick hack to test it).
So FetchData, launches the async code in IO to "fetch" (in reality, if the list is there, the cached list is returned, only the 1st time the data is "made" in the repo).
Modify data is simpler, calls modify on the repo and fetch data to post the new value.
Adapter
Lots of boilerplate... but as discussed, it's just an Adapter:
class ThingAdapter(private val itemClickCallback: ThingClickCallback) :
RecyclerView.Adapter<RecyclerView.ViewHolder>() {
The ThingClickCallback is just:
interface ThingClickCallback {
fun onThingClicked(atPosition: Int)
}
This Adapter now has an AsyncDiffer...
private val differ = AsyncListDiffer(this, DiffUtilCallback())
this in this context is the actual adapter (needed by the differ) and DiffUtilCallback is just a DiffUtil.Callback implementation:
internal class DiffUtilCallback : DiffUtil.ItemCallback<Thing>() {
override fun areItemsTheSame(oldItem: Thing, newItem: Thing): Boolean {
return oldItem.name == newItem.name
}
override fun areContentsTheSame(oldItem: Thing, newItem: Thing): Boolean {
return oldItem.age == newItem.age && oldItem.name == oldItem.name
}
nothing special here.
The only special methods in the adapter (aside from onCreateViewHolder and onBindViewHolder) are these:
fun submitList(list: Things) {
differ.submitList(list)
}
override fun getItemCount(): Int = differ.currentList.size
private fun getItem(position: Int) = differ.currentList[position]
So we ask the differ to do these for us and expose the public method submitList to emulate a listAdapter#submitList(...), except we delegate to the differ.
Because you may be wondering, here's the ViewHolder:
internal class ViewHolder(itemView: View, private val callback: ThingClickCallback) :
RecyclerView.ViewHolder(itemView) {
private val title: TextView = itemView.findViewById(R.id.thingName)
private val age: TextView = itemView.findViewById(R.id.thingAge)
fun bind(data: Thing) {
title.text = data.name
age.text = data.age.toString()
itemView.setOnClickListener { callback.onThingClicked(adapterPosition) }
}
}
Don't be too harsh, I know i passed the click listener directly, I only had about 1 hour to do all this, but nothing special, the layout it's just two text views (age and name) and we set the whole row clickable to pass the position to the callback. Nothing special here either.
Last but not least, the Fragment.
Fragment
class ThingListFragment : Fragment() {
private lateinit var viewModel: ThingsViewModel
private var binding: ThingsListFragmentBinding? = null
private val adapter = ThingAdapter(object : ThingClickCallback {
override fun onThingClicked(atPosition: Int) {
viewModel.modifyData(atPosition)
}
})
...
It has 3 member variables. The ViewModel, the Binding (I used ViewBinding why not it's just 1 liner in gradle), and the Adapter (which takes the Click listener in the ctor for convenience).
In this impl., I simply call the viewmodel with "modify item at position (X)" where X = the position of the item clicked in the adapter. (I know this could be better abstracted but this is irrelevant here).
there's only two other implemented methods in this fragment...
onDestroy:
override fun onDestroy() {
super.onDestroy()
binding = null
}
(I wonder if Google will ever accept their mistake with Fragment's lifecycle that we still have to care for this).
Anyway, the other is unsurprisingly, onCreateView.
override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?
): View? {
val root = inflater.inflate(R.layout.things_list_fragment, container, false)
binding = ThingsListFragmentBinding.bind(root)
viewModel = ViewModelProvider(this).get(ThingsViewModel::class.java)
viewModel.state.observe(viewLifecycleOwner) { state ->
when (state) {
is ThingsState.Empty -> adapter.submitList(emptyList())
is ThingsState.Loaded -> adapter.submitList(state.things)
is ThingsState.Loading -> doNothing // Show Loading? :)
}
}
binding?.thingsRecyclerView?.adapter = adapter
viewModel.fetchData()
return root
}
Bind the thing (root/binding), get the viewModel, observe the "state", set the adapter in the recyclerView, and call the viewModel to start fetching data.
That's all.
How does it work then?
The app starts, the fragment is created, subscribes to the VM state LiveData, and triggers the Fetch of data.
The ViewModel calls the repo, which is empty (new), so makeItems is called the list now has items and cached in the repo's "source" list. The viewModel receives this list asynchronously (in a coroutine) and posts the LiveData state.
The fragment receives the state and posts (submit) to the Adapter to finally show something.
When you "click" on an Item, ViewHolder (which has a click listener) triggers the "call back" towards the fragment which receives a position, this is then passed onto the Viewmodel and here the data is mutated in the Repo, which again, pushes the same list, but with a different reference on the clicked item that was modified. This causes the ViewModel to push a new LIveData state with the same list reference as before, towards the fragment, which -again- receives this, and does adapter.submitList(...).
The Adapter asynchronously calculates this and the UI updates.
It works, I can put all this in GitHub if you want to have fun, but my point is, while the concerns about the AsyncDiffer are valid (and may be or been true), this doesn't seem to be my (super limited) experience.
Are you using this differently?
When I tap on any row, the change is propagated from the Repository
UPDATE: forgot to include the doNothing function:
val doNothing: Unit
get() = Unit
I've used this for a while, I normally use it because it reads better than XXX -> {} to me. :)
While doing
items.toMutableList().map { it.copy() }
restaurants.postValue(items)
you are creating a new list but items remains the same. You have to store that new list into a variable or passing that operation directly as a param to postItem.
I'm implementing the viewModel and for communicate between the viewModel and fragment I'm doing this :
public class SplashViewModel extends AndroidViewModel {
private LiveData<Boolean> actions;
public SplashViewModel(#NonNull Application application) {
super(application);
actions= new MutableLiveData<>();
}
public void aViewModelMethod() {
//doing some stuff
if (stuff == X){
//I need to hide a view for exemple, I'm doing this
actions.postValue(true);
}
}
Now inside my Fragment I have an observable who is trigger when actions.postValue(true) is reached
viewModel.actions.observe(getViewLifecycleOwner(), new Observer<Boolean>() {
#Override
public void onChanged(Boolean action) {
if (action){
databinding.myView.setVisibility(View.VISIBLE);
}
}
});
This work fine but if I have a lot of communication I need to implement each time a new variable, and observe it ?
It's ok when they are 4 or 5 but what I am suppose to do when they are hundreds ?
I try to change boolean by an integer with a switch and a list of actions, but when the viewModel is initialize it's possible that several postValue are trigger and when I created the observable I'm only get the last one, that make sense.
Usually, I have two observable live data in my view model. First is represent the state of the whole screen. Second I use for "single-shot" events like toasts, navigation, showing dialogs.
My view model:
class PinCreateViewModel(...) : ViewModel() {
val event = MutableLiveData<BaseEvent<String>>()
val state = MutableLiveData<PinCreateViewState>()
}
I have a single state object for the whole screen:
sealed class PinCreateViewState {
object FirstInput : PinCreateViewState()
data class SecondInput(val firstEnteredPin: String) : PinCreateViewState()
object Error : PinCreateViewState()
object Loading : PinCreateViewState()
}
I think with this approach it's easy to think about my screen states, easy to design my screen as a finite state machine, and easy to debug. Especially, I like this approach to very complex screens. In this case, I have a single source of truth for my whole screen state.
But sometimes I want to show dialogs, toast or open new screens. These things are not part of my screen state. And this is why I want to handle them separately. And in this case, I use Events:
sealed class BaseEvent(private val content: String) {
var hasBeenHandled = false
private set
fun getContentIfNotHandled(): String? {
return if (hasBeenHandled) {
null
} else {
hasBeenHandled = true
content
}
}
fun peekContent(): String = content
}
class ErrorEvent(content: String) : BaseEvent(content)
class MessageEvent(content: String) : BaseEvent(content)
And my Fragment interaction with ViewModel looks like this:
override fun onActivityCreated(savedInstanceState: Bundle?) {
super.onActivityCreated(savedInstanceState)
observe(viewModel.event, this::onEvent)
observe(viewModel.state, this::render)
}
private fun render(state: PinCreateViewState) {
when (state) {
PinCreateViewState.FirstInput -> setFirstInputState()
is PinCreateViewState.SecondInput -> setSecondInputState()
PinCreateViewState.Error -> setErrorState()
PinCreateViewState.Loading -> setLoadingState()
}
}
fun onEvent(event: BaseEvent<String>) {
event.getContentIfNotHandled()?.let { text ->
when (event) {
is MessageEvent -> showMessage(text)
is ErrorEvent -> showError(text)
}
}
}
I really like Kotlin Sealed classes because it forces me to handle all possible cases. And I can find unhandled states even before compilation.
PostValue method Posts a task to the main thread to set the given value. If you called this method multiple times before a main thread executed a posted task, only the last value would be dispatched.
If you will have hundreds of communication between your fragment and viewModel so you just have to deduce your fragment logic like if you have to show view on some conditions then just observe one non mutable live data in your fragment and use two live data's mutable and another non mutable .... use non mutable to set that boolean on every sort of stuff and checks in your viewModel and in the beginning assign that live data to your non mutable one.
private val _liveData = MutableLiveData<Boolean>()
internal val liveData: LiveData<Boolean> = _liveData
It's the better approach ,i hope i understand you question better if not please elaborate it more so that i can help .
I am new in using MVVM and Android architecture, and I am little bit confused.
say for example I want to make an app like Youtube, as you know youtube has these tabs in their bottom navigation: Home, subscription, Trending(explore)
those 3 tabs will show recylerview of items (video object), those 3 will show data from 3 different queries.
in MVVM using viewmodel and livedata, the data stream will be like this
fragment <-- viewModel <-- repository <-- client
so for those 3 tabs I will have 3 different fragments, and it also mean I will have 3 different viewModels. now I am not sure how many repositories and networking clients do I need to have
am I right if I only have 1 repository and 1 networking client ? how many repositories and clients do I need to have ?
each viewModel will retrieve liveData from this VideoRepository below code below, and eventually each fragment will observe data from each viewModel
object VideoRepository {
val homeVideos: LiveData<List<Video>> = VideoRetrofitClient.homeVideos
val subscriptionVideos: LiveData<List<Video>> = VideoRetrofitClient.subscriptionVideos
val trendingVideos: LiveData<List<Video>> = VideoRetrofitClient.trendingVideos
fun searchHomeVideos() {
VideoRetrofitClient.searchHomeVideos()
}
fun searchSubscriptionVideos() {
VideoRetrofitClient.searchHomeVideos()
}
fun searchTrendingVideos() {
VideoRetrofitClient.searchHomeVideos()
}
}
and VideoRepository will get LiveData from this VideoRetrofitClient like this code
object VideoRetrofitClient {
val homeVideos = MutableLiveData<List<Video>>()
val subscriptionVideos = MutableLiveData<List<Video>>()
val trendingVideos = MutableLiveData<List<Video>>()
fun searchHomeVideos() {
// perform networking ....
homeVideos.postValue(videos)
}
fun searchSubscriptionVideos() {
// perform networking ....
subscriptionVideos.postValue(videos)
}
fun searchTrendingVideos() {
// perform networking ....
trendingVideos.postValue(videos)
}
}
java or kotlin are ok
You need one repository for each model (data).
Video model has a VideoRepository interface.
Your repositories could be one of below:
InMemoryRepository
DatabaseRepository
RemoteRepository
When working with MVVM think about the model (data) first.
I have some data (videos) to save, so I need a model for that.
I need to save read/write that model so I need a repository.
My repository needs to save/read from database so I need VideoDatabaseRepostory
interface VideoRepository {
fun getVideos(type: VideoType)
fun getVideo(videoId: Int)
fun uploadVideo(file: File)
}
class VideoDatabaseRepository : VideoRepository {
// Accepts an enum to decide which API to call.
fun getVideos(type: VideoType) {
when (type) {
FavoriteVideos -> { }
RecentVideos -> { }
...
}
}
}
In network mode, you need some web API that filters results based on your query to the API.
First of all, in your query you can distingues them by passing parameter which can be enum type. then you can call only one repository method by just passing different type in a parameter. If it's no possible then you have to create three different queries for repository also in client.