How to determine the quality of WebRTC call - android

Here is the stats report info that I got from the Peerconnection jingle library in Android.
I want to display an indicator on the UI to show the user the current call quality based on this report if possible.
I'm not sure how to determine if it is a good call quality or bad quality
Send video statistics
ssrc_2849248716_send
bytesSent=44487
codecImplementationName=HWEncoder
framesEncoded=30
mediaType=video
packetsLost=0
packetsSent=68
qpSum=2200
ssrc=2849248716
transportId=Channel-0-1
AdaptationChanges=0
AvgEncodeMs=0
BandwidthLimitedResolution=true
CodecName=VP8
ContentType=realtime
CpuLimitedResolution=false
EncodeUsagePercent=0
FirsReceived=0
FrameHeightInput=720
FrameHeightSent=360
FrameRateInput=30
FrameRateSent=30
FrameWidthInput=1280
FrameWidthSent=640
HasEnteredLowResolution=false
hugeFramesSent=0
NacksReceived=0
PlisReceived=0
Rtt=0
TrackId=ARDAMSv0
Receive video statistics
ssrc_1142651072_recv
bytesReceived=22760
codecImplementationName=HWDecoder
framesDecoded=21
mediaType=video
packetsLost=0
packetsReceived=31
qpSum=1684
transportId=Channel-0-1
CaptureStartNtpTimeMs=0
CodecName=VP8
ContentType=realtime
CurrentDelayMs=108
DecodeMs=14
FirsSent=0
FrameHeightReceived=360
FrameRateDecoded=34
FrameRateOutput=34
FrameRateReceived=25
FrameWidthReceived=640
InterframeDelayMax=46
JitterBufferMs=77
MaxDecodeMs=21
MinPlayoutDelayMs=0
NacksSent=0
PlisSent=0
RenderDelayMs=10
TargetDelayMs=108
TimingFrameInfo=126116936,-226,-207,-13,-13,-1,-226,-226,5772436049,5772436065,5772436217,5772436273,5772436065,0,1
TrackId=ARDAMSv0
BWE statistics = bweforvideo
ActualEncBitrate=291163
ReceiveBandwidth=0
SendBandwidth=1654217
BucketDelay=0
RetransmitBitrate=0
TargetEncBitrate=1654217
TransmitBitrate=389383
Connection statistics = Conn-0-1-0
ActiveConnection=true
bytesReceived=17759
bytesSent=31747
packetsSent=75
Readable=true
requestsSent=3
consentRequestsSent=1
responsesSent=3
requestsReceived=3
responsesReceived=3
ChannelId=Channel-0-1
localCandidateId=Cand-P/Rpk08E
LocalCandidateType=prflx
remoteCandidateId=Cand-gAVGaHs7
RemoteCandidateType=relay
Rtt=110
packetsDiscardedOnSend=0
TransportType=udp
Writable=true
onPeerConnectionStatsReady: fps = 30 target BR = 1654217 actual BR = 291163

I would recommend showing them the basic stats to the user as a first step like Packet loss %, bandwidth (upload & download), if possible the network signal strength. Calculate them for every two seconds.
Ref:
Chromes Webrtc stats: chrome://webrtc-internals
Signal strength: How to detect internet speed in JavaScript?
Packet loss: Math.round((totalPacketLost / totalPacketSent) * 1000);

Related

Accuracy of /proc/diskstats in Android

I'm trying to measure I/O throughput in Android. I tried a simple test by running Androdbench, and sampling /proc/diskstats for /dev/sda every second. But the results dont match.
Androbench tells me that my phone's storage is capable of a maximum 160MB/s sequential write throughput. But when I diff the "sectors written" field of diskstats I find that the disk writes 500 MB/s at one point. Which doesnt make sense. Here are the two strange samples
207808 53404 19437816 332280 230564 26206 49888720 1100720 0 103030 1433600
207808 53404 19437816 332280 230590 26229 50937672 1100900 0 103210 1433780
These should be block layer results, so to my understanding there should be no cache involved. What am I missing?

audio latency issues

In the application which I want to create, I face some technical obstacles. I have two music tracks in the application. For example, a user imports the music background as a first track. The second path is a voice recorded by the user to the rhythm of the first track played by the speaker device (or headphones). At this moment we face latency. After recording and playing back in the app, the user hears the loss of synchronisation between tracks, which occurs because of the microphone and speaker latencies.
Firstly, I try to detect the delay by filtering the input sound. I use android’s AudioRecord class, and the method read(). This method fills my short array with audio data.
I found that the initial values of this array are zeros so I decided to cut them out before I will start to write them into the output stream.
So I consider those zeros as a „warmup” latency of the microphone. Is this approach correct? This operation gives some results, but it doesn’t resolve the problem, and at this stage, I’m far away from that.
But the worse case is with the delay between starting the speakers and playing the music. This delay I cannot filter or detect. I tried to create some calibration feature which counts the delay. I play a „beep” sound through the speakers, and when I start to play it, I also begin to measure time. Then, I start recording and listen for this sound being detected by the microphone. When I recognise this sound in the app, I stop measuring time. I repeat this process several times, and the final value is the average from those results. That is how I try to measure the latency of the device. Now, when I have this value, I can simply shift the second track backwards to achieve synchronisation of both records (I will lose some initial milliseconds of the recording, but I skip this case, for now, there are some possibilities to fix it).
I thought that this approach would resolve the problem, but it turned out this is not as simple as I thought. I found two issues here:
1. Delay while playing two tracks simultaneously
2. Random in device audio latency.
The first: I play two tracks using AudioTrack class and I run method play() like this:
val firstTrack = //creating a track
val secondTrack = //creating a track
firstTrack.play()
secondTrack.play()
This code causes delays at the stage of playing tracks. Now, I don’t even have to think about latency while recording; I cannot play two tracks simultaneously without delays. I tested this with some external audio file (not recorded in my app) - I’m starting the same audio file using the code above, and I can see a delay. I also tried it with MediaPlayer class, and I have the same results. In this case, I even try to play tracks when callback OnPreparedListener invoke:
val firstTrack = //AudioPlayer
val secondTrack = //AudioPlayer
second.setOnPreparedListener {
first.start()
second.start()
}
And it doesn’t help.
I know that there is one more class provided by Android called SoundPool. According to the documentation, it can be better with playing tracks simultaneously, but I can’t use it because it supports only small audio files and that can't limit me.
How can I resolve this problem? How can I start playing two tracks precisely at the same time?
The second: Audio latency is not deterministic - sometimes it is smaller, and sometimes it’s huge, and it’s out of my hands. So measuring device latency can help but again - it cannot resolve the problem.
To sum up: is there any solution, which can give me exact latency per device (or app session?) or other triggers which detect actual delay, to provide the best synchronisation while playback two tracks at the same time?
Thank you in advance!
Synchronising audio for karaoke apps is tough. The main issue you seem to be facing is variable latency in the output stream.
This is almost certainly caused by "warm up" latency: the time it takes from hitting "play" on your backing track to the first frame of audio data being rendered by the audio device (e.g. headphones). This can have large variance and is difficult to measure.
The first (and easiest) thing to try is to use MODE_STREAM when constructing your AudioTrack and prime it with bufferSizeInBytes of data prior to calling play (more here). This should result in lower, more consistent "warm up" latency.
A better way is to use the Android NDK to have a continuously running audio stream which is just outputting silence until the moment you hit play, then start sending audio frames immediately. The only latency you have here is the continuous output latency.
If you decide to go down this route I recommend taking a look at the Oboe library (full disclosure: I am one of the authors).
To answer one of your specific questions...
Is there a way to calculate the latency of the audio output stream programatically?
Yes. The easiest way to explain this is with a code sample (this is C++ for the AAudio API but the principle is the same using Java AudioTrack):
// Get the index and time that a known audio frame was presented for playing
int64_t existingFrameIndex;
int64_t existingFramePresentationTime;
AAudioStream_getTimestamp(stream, CLOCK_MONOTONIC, &existingFrameIndex, &existingFramePresentationTime);
// Get the write index for the next audio frame
int64_t writeIndex = AAudioStream_getFramesWritten(stream);
// Calculate the number of frames between our known frame and the write index
int64_t frameIndexDelta = writeIndex - existingFrameIndex;
// Calculate the time which the next frame will be presented
int64_t frameTimeDelta = (frameIndexDelta * NANOS_PER_SECOND) / sampleRate_;
int64_t nextFramePresentationTime = existingFramePresentationTime + frameTimeDelta;
// Assume that the next frame will be written into the stream at the current time
int64_t nextFrameWriteTime = get_time_nanoseconds(CLOCK_MONOTONIC);
// Calculate the latency
*latencyMillis = (double) (nextFramePresentationTime - nextFrameWriteTime) / NANOS_PER_MILLISECOND;
A caveat: This method relies on accurate timestamps being reported by the audio hardware. I know this works on Google Pixel devices but have heard reports that it isn't so accurate on other devices so YMMV.
Following the answer of donturner, here's a Java version (that also uses other methods depending on the SDK version)
/** The audio latency has not been estimated yet */
private static long AUDIO_LATENCY_NOT_ESTIMATED = Long.MIN_VALUE+1;
/** The audio latency default value if we cannot estimate it */
private static long DEFAULT_AUDIO_LATENCY = 100L * 1000L * 1000L; // 100ms
/**
* Estimate the audio latency
*
* Not accurate at all, depends on SDK version, etc. But that's the best
* we can do.
*/
private static void estimateAudioLatency(AudioTrack track, long audioFramesWritten) {
long estimatedAudioLatency = AUDIO_LATENCY_NOT_ESTIMATED;
// First method. SDK >= 19.
if (Build.VERSION.SDK_INT >= 19 && track != null) {
AudioTimestamp audioTimestamp = new AudioTimestamp();
if (track.getTimestamp(audioTimestamp)) {
// Calculate the number of frames between our known frame and the write index
long frameIndexDelta = audioFramesWritten - audioTimestamp.framePosition;
// Calculate the time which the next frame will be presented
long frameTimeDelta = _framesToNanoSeconds(frameIndexDelta);
long nextFramePresentationTime = audioTimestamp.nanoTime + frameTimeDelta;
// Assume that the next frame will be written at the current time
long nextFrameWriteTime = System.nanoTime();
// Calculate the latency
estimatedAudioLatency = nextFramePresentationTime - nextFrameWriteTime;
}
}
// Second method. SDK >= 18.
if (estimatedAudioLatency == AUDIO_LATENCY_NOT_ESTIMATED && Build.VERSION.SDK_INT >= 18) {
Method getLatencyMethod;
try {
getLatencyMethod = AudioTrack.class.getMethod("getLatency", (Class<?>[]) null);
estimatedAudioLatency = (Integer) getLatencyMethod.invoke(track, (Object[]) null) * 1000000L;
} catch (Exception ignored) {}
}
// If no method has successfully gave us a value, let's try a third method
if (estimatedAudioLatency == AUDIO_LATENCY_NOT_ESTIMATED) {
AudioManager audioManager = (AudioManager) CRT.getInstance().getSystemService(Context.AUDIO_SERVICE);
try {
Method getOutputLatencyMethod = audioManager.getClass().getMethod("getOutputLatency", int.class);
estimatedAudioLatency = (Integer) getOutputLatencyMethod.invoke(audioManager, AudioManager.STREAM_MUSIC) * 1000000L;
} catch (Exception ignored) {}
}
// No method gave us a value. Let's use a default value. Better than nothing.
if (estimatedAudioLatency == AUDIO_LATENCY_NOT_ESTIMATED) {
estimatedAudioLatency = DEFAULT_AUDIO_LATENCY;
}
return estimatedAudioLatency
}
private static long _framesToNanoSeconds(long frames) {
return frames * 1000000000L / SAMPLE_RATE;
}
The android MediaPlayer class is notoriously slow to begin audio playback, I experienced an issue in an app I was creating where there was a greater than one second delay to begin playing an audio clip. I resolved it by switching to ExoPlayer which resulted in the playback starting within 100ms. I've also read that ffmpeg has even faster start audio startup time than ExoPlayer but I haven't used it so I can't make any promises.

Android camera2 jpeg framerate

I am trying to save image sequences with fixed framerates (preferably up to 30) on an android device with FULL capability for camera2 (Galaxy S7), but I am unable to a) get a steady framerate, b) reach even 20fps (with jpeg encoding). I already included the suggestions from Android camera2 capture burst is too slow.
The minimum frame duration for JPEG is 33.33 milliseconds (for resolutions below 1920x1080) according to
characteristics.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP).getOutputMinFrameDuration(ImageFormat.JPEG, size);
and the stallduration is 0ms for every size (similar for YUV_420_888).
My capture builder looks as follows:
captureBuilder.set(CaptureRequest.CONTROL_AE_MODE, CONTROL_AE_MODE_OFF);
captureBuilder.set(CaptureRequest.SENSOR_EXPOSURE_TIME, _exp_time);
captureBuilder.set(CaptureRequest.CONTROL_AE_LOCK, true);
captureBuilder.set(CaptureRequest.SENSOR_SENSITIVITY, _iso_value);
captureBuilder.set(CaptureRequest.LENS_FOCUS_DISTANCE, _foc_dist);
captureBuilder.set(CaptureRequest.CONTROL_AF_MODE, CONTROL_AF_MODE_OFF);
captureBuilder.set(CaptureRequest.CONTROL_AWB_MODE, _wb_value);
// https://stackoverflow.com/questions/29265126/android-camera2-capture-burst-is-too-slow
captureBuilder.set(CaptureRequest.EDGE_MODE,CaptureRequest.EDGE_MODE_OFF);
captureBuilder.set(CaptureRequest.COLOR_CORRECTION_ABERRATION_MODE, CaptureRequest.COLOR_CORRECTION_ABERRATION_MODE_OFF);
captureBuilder.set(CaptureRequest.NOISE_REDUCTION_MODE, CaptureRequest.NOISE_REDUCTION_MODE_OFF);
captureBuilder.set(CaptureRequest.CONTROL_AF_TRIGGER, CaptureRequest.CONTROL_AF_TRIGGER_CANCEL);
// Orientation
int rotation = getWindowManager().getDefaultDisplay().getRotation();
captureBuilder.set(CaptureRequest.JPEG_ORIENTATION,ORIENTATIONS.get(rotation));
Focus distance is set to 0.0 (inf), iso is set to 100, exposure-time 5ms. Whitebalance can be set to OFF/AUTO/ANY VALUE, it does not impact the times below.
I start the capture session with the following command:
session.setRepeatingRequest(_capReq.build(), captureListener, mBackgroundHandler);
Note: It does not make a difference if I request RepeatingRequest or RepeatingBurst..
In the preview (only texture surface attached), everything is at 30fps.
However, as soon as I attach an image reader (listener running on HandlerThread) which I instantiate like follows (without saving, only measuring time between frames):
reader = ImageReader.newInstance(_img_width, _img_height, ImageFormat.JPEG, 2);
reader.setOnImageAvailableListener(readerListener, mBackgroundHandler);
With time-measuring code:
ImageReader.OnImageAvailableListener readerListener = new ImageReader.OnImageAvailableListener() {
#Override
public void onImageAvailable(ImageReader myreader) {
Image image = null;
image = myreader.acquireNextImage();
if (image == null) {
return;
}
long curr = image.getTimestamp();
Log.d("curr- _last_ts", "" + ((curr - last_ts) / 1000000) + " ms");
last_ts = curr;
image.close();
}
}
I get periodically repeating time differences like this:
99 ms - 66 ms - 66 ms - 99 ms - 66 ms - 66 ms ...
I do not understand why these take double or triple the time that the stream configuration map advertised for jpeg? The exposure time is well below the frame duration of 33ms. Is there some other internal processing happening that I am not aware of?
I tried the same for the YUV_420_888 format, which resulted in constant time-differences of 33ms. The problem I have here is that the cellphone lacks the bandwidth to store the images fast enough (I tried the method described in How to save a YUV_420_888 image?). If you know of any method to compress or encode these images fast enough myself, please let me know.
Edit: From the documentation of getOutputStallDuration: "In other words, using a repeating YUV request would result in a steady frame rate (let's say it's 30 FPS). If a single JPEG request is submitted periodically, the frame rate will stay at 30 FPS (as long as we wait for the previous JPEG to return each time). If we try to submit a repeating YUV + JPEG request, then the frame rate will drop from 30 FPS." Does this imply that I need to periodically request a single capture()?
Edit2: From https://developer.android.com/reference/android/hardware/camera2/CaptureRequest.html: "The necessary information for the application, given the model above, is provided via the android.scaler.streamConfigurationMap field using getOutputMinFrameDuration(int, Size). These are used to determine the maximum frame rate / minimum frame duration that is possible for a given stream configuration.
Specifically, the application can use the following rules to determine the minimum frame duration it can request from the camera device:
Let the set of currently configured input/output streams be called S.
Find the minimum frame durations for each stream in S, by looking it up in android.scaler.streamConfigurationMap using getOutputMinFrameDuration(int, Size) (with its respective size/format). Let this set of frame durations be called F.
For any given request R, the minimum frame duration allowed for R is the maximum out of all values in F. Let the streams used in R be called S_r.
If none of the streams in S_r have a stall time (listed in getOutputStallDuration(int, Size) using its respective size/format), then the frame duration in F determines the steady state frame rate that the application will get if it uses R as a repeating request."
The JPEG output is by way not the fastest way to fetch frames. You can accomplish this a lot faster by drawing the frames directly onto a Quad using OpenGL.
For burst capture, a faster solution would be capturing the images to RAM without encoding them, then encoding and saving them asynchronously.
On this website you can find a lot of excellent code related to android multimedia in general.
This specific program uses OpenGL to fetch the pixel data from an MPEG video. It's not difficult to use the camera as input instead of a video. You can basically use the texture used in the CodecOutputSurface class from the mentioned program as output texture for your capture request.
A possible solution I found consists of using and dumping YUV without encoding it as JPEG in combination with a micro Sd-card that is able to save up to 95Mb per second. (I had the misconception that YUV images would be larger, so with a cellphone that has full support for the camera2-pipeline, the write speed should be the limiting factor.
With this setup, I was able to achieve the following stable rates:
1920x1080, 15fps (approx. 4Mb * 15 == 60Mb/sec)
960x720, 30fps. (approx. 1.5Mb * 30 == 45Mb/sec)
I then encode the images offline from YUV to PNG using a python script.

Scheduling latency of Android sensors handlers

rather than an answer I'm looking for an idea here.
I'd like to measure the scheduling latency of sensor sampling in Android. In particular I want to measure the time from the sensor interrupt request to when the bottom half, which is in charge of the data read, is executed.
The bottom half already has, besides the data read, a timestamping instruction. Indeed samples are collected by applications (being java or native, no difference) as a tuple [measurement, timestamp].
The timestamp follows the clock source clock_gettime(CLOCK_MONOTONIC, &t);
So assuming that the bottom-half is not preempted, somehow this timestamp gives an indication of the task scheduling instant. What is missing is a direct or indirect way to find out its corresponding irq instant.
Safely assume that we can ask any sampling rate to the sensor. The driver skeleton is the following (Galaxy's S3 gyroscope)
err = request_threaded_irq(data->client->irq, NULL,
lsm330dlc_gyro_interrupt_thread\
, IRQF_TRIGGER_RISING | IRQF_ONESHOT,\
"lsm330dlc_gyro", data);
static irqreturn_t lsm330dlc_gyro_interrupt_thread(int irq\
, void *lsm330dlc_gyro_data_p) {
...
struct lsm330dlc_gyro_data *data = lsm330dlc_gyro_data_p;
...
res = lsm330dlc_gyro_read_values(data->client,
&data->xyz_data, data->entries);
...
input_report_rel(data->input_dev, REL_RX, gyro_adjusted[0]);
input_report_rel(data->input_dev, REL_RY, gyro_adjusted[1]);
input_report_rel(data->input_dev, REL_RZ, gyro_adjusted[2]);
input_sync(data->input_dev);
...
}
The key constraint is that I need to (well, I only have enough resources to) perform this measurement from user-space, on a commercial device, without toucing and recompliling the kernel. Hopefully with a limited mpact on the experiment accuracy. I don't know if such an experiment is possible with this constraint and so far I couldn't figure out any reasonable method.
I might consider also recompiling the kernel if the experiment then becomes straightforward.
Thanks.
First Its not possible to perform this measurement without touching the kernel.
Second I didnt see any bottom half configured in your ISR code.
Third if at all Bottom half is scheduled and kernel can be recompiled , you can sample jiffie value in ISR and again resample it in bottom half. take the difference between the two samples and subtract that offset from timestamp that is exported to U-space.

AudioTrack: Playing sound coming in over WiFi

I've got an AudioTrack in my application, which is set to Stream mode. I want to write audio which I receive over a wireless connection. The AudioTrack is declared like this:
mPlayer = new AudioTrack(STREAM_TYPE,
FREQUENCY,
CHANNEL_CONFIG_OUT,
AUDIO_ENCODING,
PLAYER_CAPACITY,
PLAY_MODE);
Where the parameters are defined like:
private static final int FREQUENCY = 8000,
CHANNEL_CONFIG_OUT = AudioFormat.CHANNEL_OUT_MONO,
AUDIO_ENCODING = AudioFormat.ENCODING_PCM_16BIT,
PLAYER_CAPACITY = 2048,
STREAM_TYPE = AudioManager.STREAM_MUSIC,
PLAY_MODE = AudioTrack.MODE_STREAM;
However, when I write data to the AudioTrack with write(), it will play choppy... The call
byte[] audio = packet.getData();
mPlayer.write(audio, 0, audio.length);
is made whenever a packet is received over the network connection. Does anybody have an idea on why it sounds choppy? Maybe it has something to do with the WiFi connection itself? I don't think so, as the sound doesn't sound horrible the other way around, when I send data from the Android phone to another source over UDP. The sound then sounds complete and not choppy at all... So does anybody have an idea on why this is happening?
Do you know how many bytes per second you are recieving, the average time between packets compares, and the maximum time between packets? If not, can you add code to calculate it?
You need to be averaging 8000 samples/second * 2 bytes/sample = 16,000 bytes per second in order to keep the stream filled.
A gap of more than 2048 bytes / (16000 bytes/second) = 128 milliseconds between incoming packets will cause your stream to run dry and the audio to stutter.
One way to prevent it is to increase the buffer size (PLAYER_CAPACITY). A larger buffer will be more able to handle variation in the incoming packet size and rate. The cost of the extra stability is a larger delay in starting playback while you wait for the buffer to initially fill.
I have partially solved it by placing the mPlayer.write(audio, 0, audio.length); in it's own Thread. This does take away some of the choppy-ness (due to the fact that write is a blocking call), but it still sounds choppy after a good second or 2. It still has a significant delay of 2-3 seconds.
new Thread(){
public void run(){
byte[] audio = packet.getData();
mPlayer.write(audio, 0, audio.length);
}
}.start();
Just a little anonymous Thread that does the writing now...
Anybody have an idea on how to solve this issue?
Edit:
After some further checking and debugging, I've noticed that this is an issue with obtainBuffer.
I've looked at the java code of the AudioTrack and the C++ code of AudioTrack And I've noticed that it only can appear in the C++ code.
if (__builtin_expect(result!=NO_ERROR, false)) {
LOGW( "obtainBuffer timed out (is the CPU pegged?) "
"user=%08x, server=%08x", u, s);
mAudioTrack->start(); // FIXME: Wake up audioflinger
timeout = 1;
}
I've noticed that there is a FIXME in this piece of code. :< But anyway, could anybody explain how this C++ code works? I've had some experience with it, but it was never as complicated as this...
Edit 2:
I've tried somewhat different now, the difference being that I buffer the data I receive, and then when the buffer is filled with some data, it is being written to the player. However, the player keeps up with consuming for a few cycles, then the obtainBuffer timed out (is the CPU pegged?) warning kicks in, and there is no data at all written to the player untill it is kick started back to life... After that, it will continually get data written to it untill the buffer is emptied.
Another slight difference is that I stream a file to the player now. That is, reading it in chunks, the writing those chunks to the buffer. This simulates the packages being received over wifi...
I am beginning to wonder if this is just an OS issue that Android has, and it isn't something I can solve on my own... Anybody got any ideas on that?
Edit 3:
I've done more testing, but this doesn't help me any further. This test shows me that I only get lag when I try to write to the AudioTrack for the first time. This takes somewhat between 1 and 3 seconds to complete. I did this by using the following bit of code:
long beforeTime = Utilities.getCurrentTimeMillis(), afterTime = 0;
mPlayer.write(data, 0, data.length);
afterTime = Utilities.getCurrentTimeMillis();
Log.e("WriteToPlayerThread", "Writing a package took " + (afterTime - beforeTime) + " milliseconds");
However, I get the following results:
Logcat Image http://img810.imageshack.us/img810/3453/logcatimage.png
These show that the lag initially occurs at the beginning, after which the AudioTrack keeps getting data continuously... I really need to get this one fixed...

Categories

Resources