I want to integrate h3 java binding library to my android app and I'm getting following exception:
java.lang.UnsatisfiedLinkError: No native resource found at /android-armv7l/libh3-java.so
at com.uber.h3core.H3CoreLoader.copyResource(H3CoreLoader.java:67)
Does anyone used this library before for Android OS?
Thank you.
Initially, following the intended usage as seen in their README should make it work. If it doesn't, see below.
Known Issue: Android, can't use library
UnsatisfiedLinkError: This can be encountered when the corresponding native library is not copied/detected in the project. Following NickRadu's workaround should make it work.
Below is a step-by-step guide.
Add a JNI folder in your project app folder and rename it jniLibs (app/src/main/jniLibs) (for some reason, having it named jni only doesn't work for me).
Get the H3 JAR (make sure you use the same version) and extract the JAR contents.
Copy the folders prefixed with android- and insert them in the jniLibs folder (from step 1).
Rename the copied folders, remove the android- prefix.
Add splits { abi { enable false } } to your app's build.gradle file (within android).
Done. In general, the library should now work as expected.
If during the app installation you encounter:
INSTALL_FAILED_NO_MATCHING_ABIS,
then depending on your test device, create a copy of the folder (along with its contents) and rename it as needed.
For example, a device running on arm64-v8a, I just made a copy of the arm64 folder and renamed it to arm64-v8a. Or if you're using an emulator, make sure that you're not using one with an x86 CPU.
D8 errors: Invoke-customs are only supported starting with Android O (--min-api 26), add these compile options in your app's build.gradle (within android -- note that it may change depending on your system's Java version)
compileOptions {
sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8
}
Note: It is best to test the app on multiple CPU architecture types first to see it's behavior.
To quickly see the CPU Architecture of the device, you could install Droid Hardware Info, or run a quick test code yourself.
Here's a test block I used and its corresponding result logs:
private fun testH3() {
val h3 = H3Core.newSystemInstance()
val lat = 37.775938728915946
val lng = -122.41795063018799
val resolution = 8
val hexAddr = h3.geoToH3Address(lat, lng, resolution)
val hex = h3.stringToH3(hexAddr)
val kRingsResult = h3.kRings(hexAddr, 1)
Log.d("H3Test", "geoToH3Address: $hexAddr")
Log.d("H3Test", "stringToH3: $hex")
Log.d("H3Test", "kRings: $kRingsResult")
}
Result:
D/H3Test: geoToH3Address: 8828308281fffff
D/H3Test: stringToH3: 613196570331971583
D/H3Test: kRings: [[8828308281fffff], [8828308281fffff, 882830828dfffff, 8828308285fffff, 8828308287fffff, 8828308283fffff, 882830828bfffff, 8828308289fffff]]
I made a sample project where the library works as expected. See android-uber-h3-sample.
Also be advised that the library will not work on Android api < 26 without some modifications to the code. The function that H3Core relies on to parse the hex long to hex string Long.parseUnsignedInt was not added to Android Java until api 26.
Related
Background
Suppose I make an Android library called "MySdk", and I publish it on Jitpack/Maven.
The user of the SDK would use it by adding just the dependency of :
implementation 'com.github.my-sdk:MySdk:1.0.1'
What I'd like to get is the "1.0.1" part from it, whether I do it from within the Android library itself (can be useful to send to the SDK-server which version is used), or from the app that uses it (can be useful to report about specific issues, including via Crashlytics).
The problem
I can't find any reflection or gradle task to reach it.
What I've tried
Searching about it, if I indeed work on the Android library (that is used as a dependency), all I've found is that I can manage the version myself, via code.
Some said I could use BuildConfig of the package name of the library, but then it means that if I forget to update the code a moment before I publish the dependency, it will use the wrong value. Example of using this method:
plugins {
...
}
final def sdkVersion = "1.0.22"
android {
...
buildTypes {
release {
...
buildConfigField "String", "SDK_VERSION", "\"" + sdkVersion + "\""
}
debug {
buildConfigField "String", "SDK_VERSION", "\"" + sdkVersion + "-unreleased\""
}
}
Usage is just checking the value of BuildConfig.SDK_VERSION (after building).
Another possible solution is perhaps from gradle task inside the Android-library, that would be forced to be launched whenever you build the app that uses this library. However, I've failed to find how do it (found something here)
The question
Is it possible to query the dependency version from within the Android library of the dependency (and from the app that uses it, of course), so that I could use it during runtime?
Something automatic, that won't require me to update it before publishing ?
Maybe using Gradle task that is defined in the library, and forced to be used when building the app that uses the library?
You can use a Gradle task to capture the version of the library as presented in the build.gradle dependencies and store the version information in BuildConfig.java for each build type.
The task below captures the version of the "appcompat" dependency as an example.
dependencies {
implementation 'androidx.appcompat:appcompat:1.4.0'
}
task CaptureLibraryVersion {
def libDef = project.configurations.getByName('implementation').allDependencies.matching {
it.group.equals("androidx.appcompat") && it.name.equals("appcompat")
}
if (libDef.size() > 0) {
android.buildTypes.each {
it.buildConfigField 'String', 'LIB_VERSION', "\"${libDef[0].version}\""
}
}
}
For my example, the "appcompat" version was 1.4.0. After the task is run, BuildConfig.java contains
// Field from build type: debug
public static final String LIB_VERSION = "1.4.0";
You can reference this field in code with BuildConfig.LIB_VERSION. The task can be automatically run during each build cycle.
The simple answer to your question is 'yes' - you can do it. But if you want a simple solution to do it so the answer transforms to 'no' - there is no simple solution.
The libraries are in the classpath of your package, thus the only way to access their info at the runtime would be to record needed information during the compilation time and expose it to your application at the runtime.
There are two major 'correct' ways and you kinda have described them in your question but I will elaborate a bit.
The most correct way and relatively easy way is to expose all those variables as BuildConfig or String res values via gradle pretty much as described here. You can try to generify the approach for this using local-prefs(or helper gradle file) to store versions and use them everywhere it is needed. More info here, here, and here
The second correct, but much more complicated way is to write a gradle plugin or at least some set of tasks for collecting needed values during compile-time and providing an interface(usually via your app assets or res) for your app to access them during runtime. A pretty similar thing is already implemented for google libraries in Google Play services Plugins so it would be a good place to start.
All the other possible implementations are variations of the described two or their combination.
You can create buildSrc folder and manage dependencies in there.
after that, you can import & use Versions class in anywhere of your app.
I'm trying to migrate some Java library from 'normal' JVM to android and stuck with some Java11 APIs used in the code.
The first thing I already got - Java11 language features seems to work only with Canary build of Android Studio, see answer here
Now I need to get understanding about which APIs can be really used. Here are two use-cases which do not work for me and I can't get if I'm doing something wrong or it never should work:
List.copyOf() - introduced in Java11, method copyOf is not available on android. Methods 'List.of()', introduced with Java 9, work OK.
class java.lang.invoke.LambdaMetafactory - introduced with Java 1.8 - to be used for programmatic creation of lambdas for usage instead for reflection, is not visible on Android.
I see both of them in sources of desugar_jdk_libs here:
https://github.com/google/desugar_jdk_libs/blob/master/jdk11/src/java.base/share/classes/java/lang/invoke/LambdaMetafactory.java
https://github.com/google/desugar_jdk_libs/blob/master/src/share/classes/java/util/List.java
So - the question is: how can I identify if some Java API is supposed to be available in 'desugared' android build or no? What really can be expected from 'desugaring'?
Steps to reproduce:
Using Android Studio Canary generate a dummy "Basic Activity" project
Make sure following is provided in build.gradle
android {
compileOptions {
coreLibraryDesugaringEnabled true
sourceCompatibility JavaVersion.VERSION_11
targetCompatibility JavaVersion.VERSION_11
}
}
dependencies {
coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
}
Add following lines somewhere in code
List<Integer> ints1 = List.of(1, 2, 3);
Supplier<List<Object>> listSupplier = () -> new ArrayList<>();
List<Object> alist = listSupplier.get();
List<Integer> ints2 = List.copyOf(ints1);
LambdaMetafactory.metafactory(null,null,null,null,null,null);
Last 2 lines fail to compile for me.
PS: final application is supposed to work on Android 10+.
Contrary to the other answer, desugaring is totally possible.
The dependency to add is
dependencies {
coreLibraryDesugaring 'com.android.tools:desugar_jdk_libs:1.1.5'
}
You can find more information at the official Android Java 8 desugaring documentation.
Desugaring lib is considered unofficial. We can't expect an exact answer. We get the feature when it is ready. Now List.copyOf() method now working with the latest Gradle version.
About the LambdaMetafactory class, It is not included in Android Javadoc. This means we assume we don't have LambdaMetafactory at all. Google stripped down some java API for being lightweight.
In general, We should check android Javadoc first. If android Javadoc has no mention about some API. We can be sure we won't get that feature anytime soon.
What I'm trying to achieve
I'm trying to generate my REST API client for Android using OpenAPI Generator from the build.gradle script. That way, I wouldn't have to run the generator command line every time the specs change. Ideally, this would be generated when I build/assemble my app, and the sources would end up in the java (generated) folder, where generated sources are then accessible from the code (this is what happens with the BuildConfig.java file for example).
What I've tried so far
Following this link from their official GitHub, here's the build.gradle file I ended up with:
apply plugin: 'com.android.application'
apply plugin: 'org.openapi.generator'
...
openApiValidate {
inputSpec = "$rootDir/app/src/main/openapi/my-api.yaml"
recommend = true
}
openApiGenerate {
generatorName = "java"
inputSpec = "$rootDir/app/src/main/openapi/my-api.yaml"
outputDir = "$buildDir/generated/openapi"
groupId = "$project.group"
id = "$project.name-openapi"
version = "$project.version"
apiPackage = "com.example.mypackage.api"
invokerPackage = "com.example.mypackage.invoker"
modelPackage = "com.example.mypackage.model"
configOptions = [
java8 : "true",
dateLibrary : "java8",
library : "retrofit2"
]
}
...
First, I've never managed to get the API generated with the build/assemble task, even when I tried adding:
compileJava.dependsOn tasks.openApiGenerate
or
assemble.dependsOn tasks.openApiGenerate
The only way I could generate the sources was by manually triggering the openApiGenerate task:
Then, when I do generate my sources this way, they end up in the build folder but aren't accessible from my code, and aren't visible in the java (generated) folder:
I then have to manually copy/paste the generated source files to my project sources in order to use the API.
Even though I'm able to work around these issues by adding manual procedures, it would be way more maintainable if the whole process was simply automatic. I was able to achieve a similar result with another tool, Protobuf. Indeed, my gradle task gets triggered every time I build the app, and the sources end up in the java (generated) folder, so I don't have to do any additional work. The task is much simpler though, so I assume the main work that I'm not able to replicate with OpenAPI Generator is handled by the Protobuf plugin itself.
You have to specify path to the generated sources as a custom source set for your Gradle module, which is app in this case, as described here – https://developer.android.com/studio/build/build-variants#configure-sourcesets. That way Gradle will treat your sources as accessible from your code.
Something like this:
android {
...
sourceSets {
main {
java.srcDirs = ['build/generated/openapi/src/main/java']
}
}
...
}
I solved the issue you described like this, I'm using gradle.kts however.
See my build.gradle.kts
plugins {
// Your other plugins
id("org.openapi.generator") version "5.3.0"
}
openApiGenerate {
generatorName.set("kotlin")
inputSpec.set("$rootDir/app/src/main/openapi/my-api.yaml")
outputDir.set("$buildDir/generated/api")
// Your other specification
}
application {
// Your other code
sourceSets {
main {
java {
// TODO: Set this path according to what was generated for you
srcDir("$buildDir/generated/api/src/main/kotlin")
}
}
}
}
tasks.compileKotlin {
dependsOn(tasks.openApiGenerate)
}
You need to build the application at least once for the IDE to detect the library (at least this is the case for me in Intellij)
Your build should automatically generate the open api classes , to refer the generated classes in your java project you should add the generated class path to your source directory like it was mentioned in the other answers
https://developer.android.com/studio/build/build-variants#configure-sourcesets
As far as the task dependency goes , in android tasks are generated after configuration thus for gradle to recognize the task , wrap it inside afterEvaluate block like
afterEvaluate {
tasks.compileDebugJavaWithJavac.dependsOn(tasks.openApiGenerate)
}
I had this issue, and this answer https://stackoverflow.com/a/55646891/14111809 led me to a more informative error:
error: incompatible types: Object cannot be converted to Annotation
#java.lang.Object()
Taking a look at the generated files that were causing this error, noticed:
import com.squareup.moshi.Json;
After including a Moshi in the app build.gradle, the build succeeded and the generated code was accessible.
implementation("com.squareup.moshi:moshi-kotlin:1.13.0")
The following was done with Android Studio 3.4, Android Gradle Plugin 3.3.2 and Gradle 4.10.3.
In the build.gradle file, I have configured some unit test options like this:
android {
testOptions {
unitTests.all {
systemProperty "debug","true"
}
}
}
I do have a test function that tries to read this property:
package com.demo;
public class SysPropTestDemo {
#Test
public static void dumpSysProps() {
System.out.println("sysprop(debug)=" + System.getProperty("debug"));
}
}
When run via command line gradlew test --test com.demo.SysPropTestDemo I will get the property debug set correctly to true. If I run the same test via Android Studio without setting any options, the value shown will be null.
In order to get the same result from Android Studio, I explicitly have to enter some values in the "Run/Debug Configurations" panel, i.e something like -Ddebug=true in the VM options.
Now this is a trivial example, but what I really want to do, is to add some path to the java.library.path property in order to be able to load a JNI library compiled within the project. (I do need to write some tests that make use a modified SQLite lib, so not using JNI is not an option here)
It does work when setting additional options, but I think this is very inconvenient, since I can't enter a variable based value in the configuration options (or at least, I don't know how to). To sum it up: when setting or changing values, I do have to go through a bunch of config screens where I would really prefer to have one place in a config file.
Shouldn't Android Studio somehow make use of the values specified in the build.gradle file? If not, the docs don't make it clear that the testOptions.unitTests.all settings can only be used via gradlew invocation.
Skybow,
I feel you have two questions
1. How to load jni lib for androidTest(not for 'test[non instrumented unit tests])
- copy your jni library in corresponding folder [JNI libraries: [app/src/androidTestFLAVORNAMEDebug/jniLibs]
- load your jni library
static {
try {
System.loadLibrary("xyzjni");
} catch (Exception e) {
Logger.error("Exception on loading the jni library : " + e.getMessage());
}
}
2. How to make android studio use your config variables defined for unitTests.
- It would have great if some text file is there which has all configs.
- Or it is part of build.gradle
- I don't have any detail on this.
I have a rather large Android app that relies on many library projects. The Android compiler has a limitation of 65536 methods per .dex file and I am surpassing that number.
There are basically two paths you can choose (at least that I know of) when you hit the method limit.
1) Shrink your code
2) Build multiple dex files (see this blog post)
I looked into both and tried to find out what was causing my method count to go so high. The Google Drive API takes the biggest chunk with the Guava dependency at over 12,000. Total libs for Drive API v2 reach over 23,000!
My question I guess is, what do you think I should do? Should I remove Google Drive integration as a feature of my app? Is there a way to shrink the API down (yes, I use proguard)? Should I go the multiple dex route (which looks rather painful, especially dealing with third party APIs)?
It looks like Google has finally implementing a workaround/fix for surpassing the 65K method limit of dex files.
About the 65K Reference Limit
Android application (APK) files contain
executable bytecode files in the form of Dalvik Executable (DEX)
files, which contain the compiled code used to run your app. The
Dalvik Executable specification limits the total number of methods
that can be referenced within a single DEX file to 65,536, including
Android framework methods, library methods, and methods in your own
code. Getting past this limit requires that you configure your app
build process to generate more than one DEX file, known as a multidex
configuration.
Multidex support prior to Android 5.0
Versions of the platform prior to Android 5.0 use the Dalvik runtime
for executing app code. By default, Dalvik limits apps to a single
classes.dex bytecode file per APK. In order to get around this
limitation, you can use the multidex support library, which becomes
part of the primary DEX file of your app and then manages access to
the additional DEX files and the code they contain.
Multidex support for Android 5.0 and higher
Android 5.0 and higher uses a runtime called ART which natively
supports loading multiple dex files from application APK files. ART
performs pre-compilation at application install time which scans for
classes(..N).dex files and compiles them into a single .oat file for
execution by the Android device. For more information on the Android
5.0 runtime, see Introducing ART.
See: Building Apps with Over 65K Methods
Multidex Support Library
This library provides support for building
apps with multiple Dalvik Executable (DEX) files. Apps that reference
more than 65536 methods are required to use multidex configurations.
For more information about using multidex, see Building Apps with Over
65K Methods.
This library is located in the /extras/android/support/multidex/
directory after you download the Android Support Libraries. The
library does not contain user interface resources. To include it in
your application project, follow the instructions for Adding libraries
without resources.
The Gradle build script dependency identifier for this library is as
follows:
com.android.support:multidex:1.0.+ This dependency notation specifies
the release version 1.0.0 or higher.
You should still avoid hitting the 65K method limit by actively using proguard and reviewing your dependencies.
you can use the multidex support library for that, To enable multidex
1) include it in dependencies:
dependencies {
...
compile 'com.android.support:multidex:1.0.0'
}
2) Enable it in your app:
defaultConfig {
...
minSdkVersion 14
targetSdkVersion 21
....
multiDexEnabled true
}
3) if you have a application class for your app then Override the attachBaseContext method like this:
package ....;
...
import android.support.multidex.MultiDex;
public class MyApplication extends Application {
....
#Override
protected void attachBaseContext(Context context) {
super.attachBaseContext(context);
MultiDex.install(this);
}
}
4) if you don't have a application class for your application then register android.support.multidex.MultiDexApplication as your application in your manifest file. like this:
<application
...
android:name="android.support.multidex.MultiDexApplication">
...
</application>
and it should work fine!
Play Services 6.5+ helps:
http://android-developers.blogspot.com/2014/12/google-play-services-and-dex-method.html
"Starting with version 6.5, of Google Play services, you’ll be able to
pick from a number of individual APIs, and you can see"
...
"this will transitively include the ‘base’ libraries, which are used
across all APIs."
This is good news, for a simple game for example you probably only need the base, games and maybe drive.
"The complete list of API names is below. More details can be found on
the Android Developer site.:
com.google.android.gms:play-services-base:6.5.87
com.google.android.gms:play-services-ads:6.5.87
com.google.android.gms:play-services-appindexing:6.5.87
com.google.android.gms:play-services-maps:6.5.87
com.google.android.gms:play-services-location:6.5.87
com.google.android.gms:play-services-fitness:6.5.87
com.google.android.gms:play-services-panorama:6.5.87
com.google.android.gms:play-services-drive:6.5.87
com.google.android.gms:play-services-games:6.5.87
com.google.android.gms:play-services-wallet:6.5.87
com.google.android.gms:play-services-identity:6.5.87
com.google.android.gms:play-services-cast:6.5.87
com.google.android.gms:play-services-plus:6.5.87
com.google.android.gms:play-services-appstate:6.5.87
com.google.android.gms:play-services-wearable:6.5.87
com.google.android.gms:play-services-all-wear:6.5.87
In versions of Google Play services prior to 6.5, you had to compile the entire package of APIs into your app. In some cases, doing so made it more difficult to keep the number of methods in your app (including framework APIs, library methods, and your own code) under the 65,536 limit.
From version 6.5, you can instead selectively compile Google Play service APIs into your app. For example, to include only the Google Fit and Android Wear APIs, replace the following line in your build.gradle file:
compile 'com.google.android.gms:play-services:6.5.87'
with these lines:
compile 'com.google.android.gms:play-services-fitness:6.5.87'
compile 'com.google.android.gms:play-services-wearable:6.5.87'
for more reference, you can click here
Use proguard to lighten your apk as methods that are unused will not be in your final build. Double check you have following in your proguard config file to use proguard with guava (my apologies if you already have this, it wasn't known at time of writing) :
# Guava exclusions (http://code.google.com/p/guava-libraries/wiki/UsingProGuardWithGuava)
-dontwarn sun.misc.Unsafe
-dontwarn com.google.common.collect.MinMaxPriorityQueue
-keepclasseswithmembers public class * {
public static void main(java.lang.String[]);
}
# Guava depends on the annotation and inject packages for its annotations, keep them both
-keep public class javax.annotation.**
-keep public class javax.inject.**
In addition, if you are using ActionbarSherlock, switching to the v7 appcompat support library will also reduce your method count by a lot (based on personal experience). Instructions are located :
http://developer.android.com/tools/support-library/features.html#v7-appcompat Actionbar
http://developer.android.com/tools/support-library/setup.html#libs-with-res
You could use Jar Jar Links to shrink huge external libraries like Google Play Services (16K methods!)
In your case you will just rip everything from Google Play Services jar except common internal and drive sub-packages.
For Eclipse users not using Gradle, there are tools that will break down the Google Play Services jar and rebuild it with only the parts you want.
I use strip_play_services.sh by dextorer.
It can be difficult to know exactly which services to include because there are some internal dependencies but you can start small and add to the configuration if it turns out that needed things are missing.
I think that in the long run breaking your app in multiple dex would be the best way.
Multi-dex support is going to be the official solution for this issue. See my answer here for the details.
If not to use multidex which making build process very slow.
You can do the following.
As yahska mentioned use specific google play service library.
For most cases only this is needed.
compile 'com.google.android.gms:play-services-base:6.5.+'
Here is all available packages Selectively compiling APIs into your executable
If this will be not enough you can use gradle script. Put this code in file 'strip_play_services.gradle'
def toCamelCase(String string) {
String result = ""
string.findAll("[^\\W]+") { String word ->
result += word.capitalize()
}
return result
}
afterEvaluate { project ->
Configuration runtimeConfiguration = project.configurations.getByName('compile')
println runtimeConfiguration
ResolutionResult resolution = runtimeConfiguration.incoming.resolutionResult
// Forces resolve of configuration
ModuleVersionIdentifier module = resolution.getAllComponents().find {
it.moduleVersion.name.equals("play-services")
}.moduleVersion
def playServicesLibName = toCamelCase("${module.group} ${module.name} ${module.version}")
String prepareTaskName = "prepare${playServicesLibName}Library"
File playServiceRootFolder = project.tasks.find { it.name.equals(prepareTaskName) }.explodedDir
def tmpDir = new File(project.buildDir, 'intermediates/tmp')
tmpDir.mkdirs()
def libFile = new File(tmpDir, "${playServicesLibName}.marker")
def strippedClassFileName = "${playServicesLibName}.jar"
def classesStrippedJar = new File(tmpDir, strippedClassFileName)
def packageToExclude = ["com/google/ads/**",
"com/google/android/gms/actions/**",
"com/google/android/gms/ads/**",
// "com/google/android/gms/analytics/**",
"com/google/android/gms/appindexing/**",
"com/google/android/gms/appstate/**",
"com/google/android/gms/auth/**",
"com/google/android/gms/cast/**",
"com/google/android/gms/drive/**",
"com/google/android/gms/fitness/**",
"com/google/android/gms/games/**",
"com/google/android/gms/gcm/**",
"com/google/android/gms/identity/**",
"com/google/android/gms/location/**",
"com/google/android/gms/maps/**",
"com/google/android/gms/panorama/**",
"com/google/android/gms/plus/**",
"com/google/android/gms/security/**",
"com/google/android/gms/tagmanager/**",
"com/google/android/gms/wallet/**",
"com/google/android/gms/wearable/**"]
Task stripPlayServices = project.tasks.create(name: 'stripPlayServices', group: "Strip") {
inputs.files new File(playServiceRootFolder, "classes.jar")
outputs.dir playServiceRootFolder
description 'Strip useless packages from Google Play Services library to avoid reaching dex limit'
doLast {
def packageExcludesAsString = packageToExclude.join(",")
if (libFile.exists()
&& libFile.text == packageExcludesAsString
&& classesStrippedJar.exists()) {
println "Play services already stripped"
copy {
from(file(classesStrippedJar))
into(file(playServiceRootFolder))
rename { fileName ->
fileName = "classes.jar"
}
}
} else {
copy {
from(file(new File(playServiceRootFolder, "classes.jar")))
into(file(playServiceRootFolder))
rename { fileName ->
fileName = "classes_orig.jar"
}
}
tasks.create(name: "stripPlayServices" + module.version, type: Jar) {
destinationDir = playServiceRootFolder
archiveName = "classes.jar"
from(zipTree(new File(playServiceRootFolder, "classes_orig.jar"))) {
exclude packageToExclude
}
}.execute()
delete file(new File(playServiceRootFolder, "classes_orig.jar"))
copy {
from(file(new File(playServiceRootFolder, "classes.jar")))
into(file(tmpDir))
rename { fileName ->
fileName = strippedClassFileName
}
}
libFile.text = packageExcludesAsString
}
}
}
project.tasks.findAll {
it.name.startsWith('prepare') && it.name.endsWith('Dependencies')
}.each { Task task ->
task.dependsOn stripPlayServices
}
project.tasks.findAll { it.name.contains(prepareTaskName) }.each { Task task ->
stripPlayServices.mustRunAfter task
}
}
Then apply this script in your build.gradle, like this
apply plugin: 'com.android.application'
apply from: 'strip_play_services.gradle'
If using Google Play Services, you may know that it adds 20k+ methods. As already mentioned, Android Studio has the option for modular inclusion of specific services, but users stuck with Eclipse have to take modularisation into their own hands :(
Fortunately there's a shell script that makes the job fairly easy. Just extract to the google play services jar directory, edit the supplied .conf file as needed and execute the shell script.
An example of its use is here.
If using Google Play Services, you may know that it adds 20k+ methods. As already mentioned, Android Studio has the option for modular inclusion of specific services, but users stuck with Eclipse have to take modularisation into their own hands :(
Fortunately there's a shell script that makes the job fairly easy. Just extract to the google play services jar directory, edit the supplied .conf file as needed and execute the shell script.
An example of its use is here.
Just like he said, I replaces compile 'com.google.android.gms:play-services:9.0.0' just with the libraries that I needed and it worked.