Understanding memory management for services on android - android

I'm newbie in Android services and I need some help. I'm trying to understand the google's guide, but it really lacks lot's of information and i hate the fact that google automaticly translates to my language and doesn't allow me to DENY it, so i cant quote it here.
https://developer.android.com/guide/components/services
I've an app that perform long tasks on background, so I do understand that i need a service to achieve that since activities and related thread or resources might be killed by android when the app goes background.
My service monitore some stuff from user social media so i do need to use social media Apis to contact with their server. To make things easier i wrap the social media apis into one facade and my service deals only with that facade. this facade is a singleton
the user logs in-> the service starts to run in background -> at certain point the user leaves the app now starts the problem...
after the user left the app, my background service keeps running: OK
all its fields still aren't collected by GC: OK
but the inner fields of the facade singleton get released by GC and at certain point my service call singleton (not null) which calls some field that now is null: PROBLEM
how can i deal with that? how can i force android to keep those fields (aren't many) alive because they are being used by my service
PLEASE- do not ask me to make them parceable or something like this... it is a third party api i cant change

Related

How to use app functionality of other app in our app

Before i ask my question i will first explain some background information.
Our company is developing an app for iOS and Android. Our customers can decide to use our app (branded) or integrate our functionality into their app. As our app has some complex algorithms and communication protocols on-board. For this reason we want to provide a kind of SDK for our costumers who wants to integrate instead of using our app.
As we use BLE, NFC and GPS, we decided to make our own apps native. The issue is that many of our customers already have an app which will be a hybrid app in the most cases. So "just" making an SDK for all platforms is almost impossible, not only to build but even more to maintain.
Another important thing to keep in mind is that we want avoid that our customers need to understand our complete communication process, even stronger we won't give our algorithms or communication protocols to others because this is what makes our app/product unique at this moment.
So now the concrete question. Is it possible to provide our functionality as a kind of API so other apps can use the functionality of our app like a kind of API? This means that our app needs to be installed also on the end users smartphone but they don't need to use it individually. The idea is that the app of our customer communicates with our app like an API, our app does the communication with our hardware and gives back the result to the app of our customer. Note that user of the app should not see our app in foreground. (I have the idea from some games who requires "Play Games")
I know there is a way to exchange data between apps (Inter-App Communication) but can this also be used like kind of API?
Obviously this answer relates to Android only. (You may want to ask a separate question for IOS)
At its most basic, a Content Provider is used to exchange data. However, nothing prevents code being run in the provider host to extract that data.
For example, You can host a Content Provider in your app which when called with specific parameters, performs a number of your complex functions and returns a simple table of data (MatrixCursor) or even just a simple True/False response within that cursor.
You could further simplify the usage of this by creating an Android Library that your customers could import into their own project to make it more friendly and API like by adding methods and functions to the library that then delegated their calls to the Content Provider or even to a Broadcast receiver in your main app which could then respond with its own broadcast.
You could even make use of invisible Activities. i.e Call an activity in your app that has no UI.
Even more preferable would be to create your callable code as a self contained library that your customers could use which would negate the need to talk to separate apps completely.
In my understanding, you need other apps to invoke a particular functionality, say call a web API or open an activity and write something or open a popup dialog and do something.
In android: Yeh, it is possible by BroadcastReciever. you only have to listen to the particular action and perform the functionality.
So the task is, you only have to supply the action.

Why to use bound (not-started) services within the application process?

As everyone might know, there are two primary types of services in Android: started and bound (I'm not counting started and bound services, as they're mostly the same as just started services).
You can find tons of tutorials on how to use bound services or how to bind to started service, but there are actually no answer on why would anyone use bound (not-started) services within the application process (in other words - without IPC)?
Is there any (hidden?) profit from using bound service (let's say for some sort of processing) over using standard threading tools (AsyncTaks, Executors, plain threads)? Would it worth boilerplate code for connection of such service?
Some context
Question appeared after digging through sources of Google Camera. They're creating a bound (once again - not-started) service for saving images. What is the point? Why not just used some Executor? Am I missing something important?
If that is a bound service, then there is no way it would help to persist saving progress while device configuration is changing (i.e. device is rotated). So I see no advantages.
Started Service is useful in case where there is need for no or very limited (one-way) interaction between starting component i.e. Activity or BroadcastReceiver, and the started service. For instance, a fire-and-forget background download. You give the downloader service a URL, start the service and forget all about it. The only way the downloader service ever interacts with the user is using Notifications. The Activity might as well go on the backstack in the meantime, you don't care. Note that in this case, the service is serving the Activity which started it, and there is no requirement for it to be available generically to other Activities.
On the other hand, bound service is a more generic service or one that needs to serve multiple activities, and more over, needs multiple bidirectional interactions i.e. Activity sends a message to Service, then Service sends a message back to Activity and so on. Consider the example of background music player service, where you pass the music file or remote stream URI/URL to the service, then another activity could change the volume or switch to another track etc. A message back from service to activity could be that the mp3 file is incomplete or corrupted, or a track completed message.
In fact, I came to this question looking for the answer to this exact question, but found the answer quite satisfactorily and complete in the link provided by #SagarPikhwal. Admittedly, I'm a newbie as far as Android programming is concerned, so the above is all as per what I understood !
Edit:
Realized that I didn't answer (to the best of my abilities), the other part of the question about the code you saw for Google Camera. I think the reason why they create a bound service is because Camera is a common shared resource, and there could be multiple users of that system resource simultaneously. The activity using the camera service to capture an image or video is not the exclusive user. The Google Camera application is yet another user of the camera hardware, while there could others, and all of them served by the bound-service.

When to use and when not to use a Service in Android

I have been developing for Android for little less then 2 years, and I am still puzzled by this seemingly simple question.
When should one implement a service?
From my experience there are some rare cases but I am questioning this because on every phone there are quite a lot of them running and I doubt it's just a poor application design.
This is essentially core of my question but following are some of my experiences and thoughts about the subject which can explain my question in more detail.
In all apps that I have developed only one really required a service. It was a background sound recorder and I was using it as Foreground service with notification since I wanted buttons to be able to control it (like music players do for example).
Except this I never really saw a requirement for the constantly running service because:
A) Intent listeners (Manifest registered BroadcastReceivers) are quite a useful feature and using them as you know is usually enough for many use-cases (for example showing notifications).
B) If scheduled execution is a must one can subscribe to alarm events.
C) I know that service in Android is quite different then for example in Windows since in Android services are just a "package" to organize your code in and have a the system manage the lifetime of the object. Services use the Main Thread but it's customary to spawn new threads in them.
D) In the development documentation services are suggested for network communication and background calculations but I don't get why you should not just use AsyncTasks for that. I am a big fan of these and use them extensively for lot of things from downloading data from the internet to doing FFT calculations under time critical conditions.
E) I get the usefulness of Foreground services but why are people using background services so much (excluding the system apps).
Those are my thoughts about the SERVICE and I hope someone with more experience will be able to explain these PROS and CONS (along with others that I probably missed).
When should one implement a service?
When you have work -- delivering value to the user -- that:
Needs some time to complete, perhaps longer than you have time for in the component wishing the work to be done, or
Is delivering that value under user control (e.g., music player, controlled by play/pause buttons in a UI), or
In rare cases, needs to be running continuously, as it delivers value continuously
there are quite a lot of them running and I doubt it's just a poor application design
Some are likely to be poor implementations, either due to technical misunderstandings, or other concerns (e.g., making marketing happy) trumping making users happy.
It was a background sound recorder and I was using it as Foreground service with notification since I wanted buttons to be able to control it (like music players do for example)
That is a reasonable use for a service, IMHO.
Intent listeners are quite a useful feature and using them as you know is usually enough for many use-cases (for example showing notifications)
I assume that by "Intent listeners" you mean manifest-registered BroadcastReceivers. In that case, if the work to be done by the BroadcastReceiver will take more than a millisecond, that work should be delegated to an IntentService for completion. onReceive() is called on the main application thread, and it is not safe for a manifest-registered BroadcastReceiver to fork a bare thread, as the process could go away shortly after onReceive() returns. However, in these cases, the service is usually short-lived (e.g., do some network I/O and disk I/O, then go away).
In the development documentation services are suggested for network communication and background calculations but I don't get why you should not just use AsyncTasks for that
An AsyncTask is a fine solution for background work that is:
Requested by the UI (activity or fragment), and
Will take less than a second or so, and
Is non-critical
For example, if you are downloading avatars to show in a ListView, AsyncTask is probably a fine choice, whether you use them directly or use some image-fetching library that uses them internally.
Conversely, if the user buys an MP3 through your app, and you need to download that MP3 file, an AsyncTask is not a good solution. That could easily take over a second. While the download is going on, the user could switch away from the app (e.g., press HOME). At that point, your process is eligible to be terminated... perhaps before your download is complete. Using an IntentService to manage the download is a signal to the OS that you are really doing work here, adding value to the user, and so the process will be left alone for a little while.
Note that if the background work might take 15+ seconds, WakefulBroadcastReceiver or my WakefulIntentService is probably a good idea, so the device does not fall asleep while you are trying to wrap up this bit of work.
I can name some of the Service uses from my experience:
to implement
location listener,
sound module, generating various voices
in app content updates,
API, provide services to other apps
in app billing
Communication with webservices (if requests frequency is high)
actually (excluding 5.) they all are working for the whole app duration, they are using some of the other android services, also they manage their state. I suppose one of the important thing here is state management during application life cycle changes.
I prefer to look at AsyncTasks in a same way as Executors (ExecutorService), they should be executed sequentially and for small tasks.
In the android website, you can find a table when to use Service, Thread, or WorkManager (the new API for scheduling jobs, currently in alpha as of this comment posted). https://developer.android.com/guide/background/#table-choose
The website also state that you need to use started service only as last resort. The Android platform may not support started services in the future. Refer to this link https://developer.android.com/topic/performance/scheduling#services
You should avoid using started services that run perpetually or perform periodic work, since they continue to use device resources even when they aren't performing useful tasks. Instead, you should use other solutions that this page describes, and that provide native lifecycle management. Use started services only as a last resort. The Android platform may not support started services in the future.
If you consider UI and bound services, u would think that both can exist and not be doing anything for certian periods. In such scenarios, your UI can be recreated a lot of times however service does not. And this is where service is important. Lets say you are processing images and then rotate device you want processing to continue while UI is being recreated. You recording a voice and then rotate device. These are one of the places where I find service very important. (Having lot of heavy data processing, interaction with web, that could be few seconds)

Android StartActivtyForResult() from a Service

First I'm sorry for my english that is not so good :).
I am facing a problem to develop my app.
That is a general architecture scheme of my solution.
http://i.stack.imgur.com/ooTmE.png
To be quick, the app has to decode code bare but with two possible ways:
using exernal device (The constructor provides a sdk containing an android Service to communicate with the device),
use the camera of the mobile using the library Zxing which is possible to manage it with intent.
The goal of my own service is to manage some business code and make transparent the choice of the tool for the user.
I believed that was a good solution but I wanted to implement it and I had different problems.
My main trouble is that I cannot execute StartActivityForResult inside the service.
Do somebody have any suggestions for my problem whether a change in the architecture or a solution for the main problem?
#Laurent' : You have totaly right my service acts as an API adapter.
I will try to make the expected behaviour more clear.
I have an app that needs to recognize (real) objects which have QR codes on their top. This recognition action will be done several times by the user during the life of the app.
The user chooses to launch the recognition by clicking on a button (or otherwise but he knows that the recogntion will start). So no notification is needed.
The thing is he doesn't choose the way to do the recogniton. It is why, as you said, I implement an adapter.
The adapter chooses between :
Camera mobile or external device. The first is an activity coming from the Zxing library. The second one is a service that manages the external device. This service provides an interface to get back result.
One more thing, I need that my whole implementation (adapter and co) can be re-used by other apps that will also need to do recognition.
So my thought was to implement a service as an adapter to answer my two conditions (make transparent the choice for the user - and make the recognition available for other apps).
I hope you understand my problematic.
Given your architecture, your MyOwnService must act as an API adapter : it should provide a unified scanning API and address each external service specificities transparently.
Your expected behaviour is not clear enough to provide a solution that suits your needs but here are a few remarks that can be of some help.
Passive scanning:
Even if there are some workarounds : no activity should be launched from a service (not directly). Never. Bad. Services are background stuff, the most they will be permitted is to hint users with Notifications (this is point 2 of Justin excellent answer).
As a consequence there's nothing as a 'popup Activities' (and that's good!). If you need to continuously scan for barcodes, even when your activity is not run, then the only way to warn users is by using status bar notification.
Active scanning:
Inside your own activity you can bind to your wrapper service and make it start scanning for codebars. When it finds one it has to message your activity. Your Activity message handler has complete access to the UI to inform the user of your findings.
You selected Active Scanning in your edit, your problem is therefore to find a way for your service to actively notify your main application (the one that started the active scanning) that a new item has been scanned successfully.
You do NOT do this by starting a new activity (remember: this is bad) but you can bind to a service and/or use Messages between the wrapper service and the application.
I advice you take the time to read (and more time to comprehend) this android developer article on BoundServices and especially the part about Messengers.
A full example of Two Way Messaging between a Service and an Activity can be found in the following android examples : Service & Activity
Warning: designing robust, full blown AIDL-based services is a tough job.
Two ways you could solve this problem.
1) Have MyOwnService do a callback into MainActivity telling it to launch your ScanActivity.
- This is a better approach if MyOwnService's task is only going to be running while MainActivity is running and if the user would expect the ScanActivity to come up automatically.
2) Have MyOwnService create a notification that will let the user access the ScanActivity.
- This is a better approach if MyOwnService's task might be running longer than the life span of MainActivity. That way, you can let the user know, unobstrusively, that they might want to access the ScanActivity.
So finally I changed my architecture.
I make the choice to delete myOwnService and to create an intermediate activity that will be my API Adaptater.
This activity will have a dialog.theme to look like a dialog box indicating that a recognition is under execution.
If the recognition uses the external device this activity will stay at the foreground otherwise the camera activity will start (Being managed by the intermediate activity).
Thank to that I can manage my result from the intermediate activity and do not have an android strange architecture, keeping my business code for the recognition outside my main app.
Service was not the good choice.
Thanks a lot for you help and your time.

android design considerations: AsyncTask vs Service (IntentService?)

I'm designing an android app which will need to do the following steps:
user pushes a button or otherwise indicates to "sync data".
sync process will use REST web services to move data to and from the server.
the data will be stored locally in a sqlite database.
the sync process should provide status updates/messages to the UI
the user should not be allowed to wander off to other parts of the application and do more work during the sync process.
The first time the sync process runs, it may take 10-20 minutes.
After the initial sync, less data will be transferred and stored and
I expect the process to take 1-2 minutes or less.
I've been doing a lot of reading about android's AsyncTask and various examples of using a Service ... But I don't fully understand the design considerations and trade-offs of choosing one design over the other. I currently have my demo project stubbed out using an AsyncTask. After watching (most of) Developing Android REST client applications: http://code.google.com/events/io/2010/sessions/developing-RESTful-android-apps.html# I'm left confused the design patterns described here feel overly
complex, perhaps because I just "don't get it" yet.
I come from a java, spring, web and desktop application background. Thinking and designing in terms of a handheld device is quite new to me. (What happens when the screen layout is changed? What happens when the phone rings while I'm running a sync?) Taking 2 steps back, if the initial sync IS going to be such a long running process, is there a better way for me to think about the problem->solution, the user experience, the user expectations of an application running on a phone?
Would love to hear from some more experienced android developers out there who have already wrestled with these questions.
In my opinion this is the most tricky/hard part of a mainstream/average Android development. For instance on BlackBerry this is IN TIMES easier.
Definitely you need to use a Service.
AsyncTask does not suit, because it is tightly "bound" to your Activity via a Context handle (otherwise you would not be able to update UI of the Activity from your AsyncTask). However an Activity can be killed by OS once the Activity went in background. An example reason of going to background can be an incoming call - user switches to Phone application so your Activity becomes invisible. In this case (depending on the current RAM state) OS may decide to kill one of the background (invisible to the user) activities.
Some devs workaround this by arranging a static stuff for having a long-running actions inside of. Some recommend to use Application instance. This is because static stuff and Application exist while the whole app process exists. However those are incorrect workarounds. Processes in Android are also may be killed when OS decides it is time to. Android OS have its own considerations about what it can kill and in what order. All processes are devided to 5 levels of "killability". Here is the doc where those levels are specified. It is interesting to read there:
Because a process running a service is
ranked higher than one with background
activities, an activity that initiates
a long-running operation might do well
to start a service for that operation,
rather than simply spawn a thread —
particularly if the operation will
likely outlast the activity. Examples
of this are playing music in the
background and uploading a picture
taken by the camera to a web site.
Using a service guarantees that the
operation will have at least "service
process" priority, regardless of what
happens to the activity.
Your Activity where users initiate a long-running action should show a ProgressDialog to make sure user does not do anything else while the action is running. The guide is here.
Also, you'd most likely want to use the NotificationManager for notifying the user about your long-running action completion (or failure) if your Activity is currently invisible. Here is the NotificationManager info to start from.
There are multiple considerations that you must weigh in order to best decide how to approach your situation. It sounds like you need a good comparison between the two approaches... So here is a list of similarities, and differences and additional considerations that must be taken into account when working on a handheld device.
A Service is a part of your Application that has no UI. It may be called by a UI(Activity) to be started, or may be started by any other component of your Application. When developing, you have the freedom to place it on a different thread, or even run it in a different Task or Process. This allows you to ultimately separate it from your UI. Additionally, you may start the Service to run independently (startService) or bind your activity to it (bindService) depending upon your needs. By using custom Handlers, you can set callbacks to update the UI with your progress. A Service does not necessarily end if a User changes Activities, but may be ended at ANY time by the OS.
A AsyncTask is always instantiated from the UI thread. It only allows specific callbacks, but simplifies the process of multi-threading for the purposes of relatively short transactions (as compared to dedicated separate threaded services) that are inherently tied to actions performed by an Activity. Whenever a User changes Activities, the AsyncTask is put on "pause" and may even die because there is no UI thread for your Activity any longer.
The thing that I would be most concerned about is if the app is going to take 10-20 minutes the first time, I would ASSUME that the User will either change tasks temporarily or set the phone down until it completes (which can cause all of the same complications if the phone sleeps). Given this consideration, a threaded service bound to your activity may be your best choice. To protect your UI, I would make a Progress Dialog for your Activity that receives your progress callbacks. This limits user input in YOUR app and allows your service to continue the way that it needs to. Then override the Activity onResume to check the status of your Service and if it is running. Then you can reset the Dialog immediately.
Given that this is my preferred method, I would also take into account that the OS may kill the App at any time anyway. So make sure to have some way to detect an incomplete or partial sync. Then you may resume automatically when your Activity or Service restarts.
With AsyncTask if the user goes to another Activity you can't transfer that object to the other Activity so it dies. There are tricks you can play when say the user rotates the screen or something like that, but that doesn't extend to general purpose destruction. AsyncTask can randomly die.
Google Sync is run as a Service in the background because syncing can take a while to complete. You might need to follow their path and create your own sync service that you can communicate with. Here is some thoughts how to accomplish that:
http://mylifewithandroid.blogspot.com/2008/01/about-binders.html
You can definitely communicate between Service and Activity, but it's tricky to do it right.
The choice is mainly dependent on the app design. Since both AsyncTask and IntentService stands their ground, what you may want from the app(user experience) is more important and then choose either or both. Some scenarios are mentioned below (mostly what I experienced while developing apps)
Assume apps that have feeds pages - where more than one api calls are made to make the page presentable ( /getFriends, /getDates, /getPictures etc.) you can warp all such api calls to a single AsyncTask with executor which is multithreaded and the sequence of execution doesn't matter. In contrast to IntentService which runs all calls in sequence in a single worker thread. For a high end device with multi-core the call from AsyncTask is more effective. And if you start the AsyncTask on UI thread then updating IU is a piece of cakes(read less boiler plate code). And even if an user leaves the page, with intelligent use of not holding on to the context the app doesn't crash.
Assuming you are trying to write an app which doesn't need the user to be on view/activity/fragment and the total execution time to show something is not mission critical (assume sync service or user notification/alarm) then IntentService is a better choice. (no hassle to start Asynctask on UI thread so that you don't need to write a Handler to force changes on UI etc. etc. and less boiler plate code)
From my experience - write small app for both and compare the pros and cons to get a better idea. (p.s I'd suggest take a look at the iosched app from google to get a better idea - they use both Asynctask and IntentService)
I tend to prefer the IntentService + BroadcastReceiver combo because they give you a really strong degree of control
You definitely have to make sure the UI is running if you are updating something on the screen. ASyncTask crashes were at once reported to be one of the top causes of Android crashes. This can be avoided by keeping some sort of "activityIsAlive" variable and skipping or delaying a UI update if the activity is dead.
The IntentService + BroadcastReceiver combo is a little more resistant to the crash because most tutorials tell you to shut off the BroadcastReceiver onPause or onStop. If you do not do this, again you'll have to turn off the UI update. There's a runOnUiThread command somewhere that will help you do UI updates.
The IntentService + BroadcastReceiver combo is also more extensible. You can create functions and extend BroadcastReceiver to make a more elegant REST processing solution. However, it does require more plumbing vs an ASyncTask
If you do delay the UI update, you may be able to rig it on OnWindowFocusChangedListener. When that function receives true, it means that the UI is alive.
tldr; Make sure the Activity and/or Fragment is alive before updating the UI if you are running something in the background
2015 Edit: check out Loaders as well. A little harder to grasp because there's a lot going on behind the scenes

Categories

Resources