What's the difference between Subcomponents and Dependent-Components with specific scope in action? What's pros or cons of every one?
My Story: Recently I decided to stop using dagger-android and completely switched to traditional dagger for dependency injection in the whole of my project. Do you have any recommendations for creating component/subcomponent per fragment/activity?
If you create sub-component, all your component's dependencies will get available in your sub-component too.
You can access sub-component only via parent component instance.
The sub-component, scope is considered smaller than that of its parent component. So, your parent component and sub-component can't use the same scope annotation.
If you create dependent-component, then you have to explicitly expose dependency in your parent component. Then only, the child-component can use it.
You can use dependent-component directly, but you'll have to provide instance of parent component to build a dependent-component.
Get more details from these videos: https://www.youtube.com/playlist?list=PLrnPJCHvNZuA2ioi4soDZKz8euUQnJW65
Just watched an interview, and the guy said that the downside of Subcomponents is that if you change anything inside them, the whole AppComponent gets regenerated (and in big codebases that can be very slow), while Dependent-Components are separate entities.
Will research that more and correct the post if it is wrong.
Related
In Clean Architecture, Robert Martin says:
It is in your Main component that dependencies should be injected by a
Dependency Injection framework. Once they are injected into Main, Main
should distribute those dependencies normally, without using the
framework.
Martin, Robert C.. Clean Architecture (Robert C. Martin Series) (p.
232). Pearson Education. Kindle Edition.
However, Dagger doesn't work this way. Once you set up your dependencies in your application, you still need to depend on it as a framework, e.g. write #Inject annotations to get the dependencies into your classes. There is no way to 'distribute these dependencies' normally, by which I assume he means passing them through a constructor?
Can anyone help clear up my understanding and how best to use Dagger with a Clean style?
On Android, exactly following the advice you quoted from Robert Martin is rather difficult.
This is because there is no precise main entry point. Application, Service and Activity are quasi-entry points as your app will start with the OS instantiating one of these.
However, you don't have control over the constructor or anything really before the lifecycle callbacks. Hence, Dagger 2 on Android has had to rely on manually calling requesting a Component and calling Component#inject() inside lifecycle callbacks quasi-entry points.
However, there have been some measures to address this problem. Dagger-Android goes some way to address this by making you depend on AndroidInjector rather than some series of calls to the Application in order to retrieve the Component manually.
Even further, there is now FragmentFactory that allows control over the constructor of a Fragment, making Fragments amenable for constructor injection. If we use this then we have gone some way to following Robert Martin's advice.
To clarify the original quotation, I believe Robert Martin means that classes apart from the component root should not be polluted with logic for obtaining dependencies (e.g., by reaching into the Application, pulling out the Dagger Component). He is not prohibiting the use of the #Inject annotation which is lightweight meta-data (part of JSR-330) that simply marks a constructor as a site for injection.
In summary, yes - the current way of using Dagger 2 on Android doesn't exactly comply with Robert Martin's excellent recommendation. Nevertheless, this is a known problem and some progress has been made towards solving it.
I saw this question, but it was from the point of testability.
In my case, I see Dagger as an additional complexity for code (create #Provides methods, inject methods, remember all the right annotations). Should I still use Dagger if I just want to inject singletons like SharedPrefUtils? Is it really faster for this case?
Dagger was not made for creating Singletons and if creating a singleton is the reason you want to add Dagger to your project, then its an overkill. Dagger is a dependency injection framework that helps make the process of providing and injecting dependencies easier in a complex project. The #Singleton would help you ensure that only a single instance of a class is created when satisfying your dependencies it is not an alternative to the Kotlin object, they could even be used together. So like other answers and comments suggest if you have a small project and you could use simple design patterns like Singleton, Factory, and Abstract factory pattern.
Dagger is a dependency injection framework. For very simple applications, you can go with manual injection which will save you time because dagger can be difficult to set up and work with from the beginning. However, if you are planning on a production application which has a very long life span and will contain multiple UIs and multiple classes, then you are definitely going to need a dependency injection framework or strategy along the line.
There is an alternative for Kotlin which is Koin. Koin works more like a Service Locator and is easier to set up than Dagger but I will prefer dagger because it has survived the test of time.
It is up to you whether you want to use automatic dependency injection or manual injection so in the end you weigh your options and see what best fits your use case.
It seems to be impossible but I can't find it written explicitly. Is there a clear reason for that ?
Thanks
That's not possible. A component can either inject everything at once or the compilation will fail with a cannot be provided error, listing what it's missing.
After all you can't partially call a constructor (if using constructor injection) and also partially injecting fields would be rather indeterministic about which objects were injected when, how, or with which scope. If both components could supply a dependency, which should provide it? Do you create and inject the object twice? What if another object depends on it in the other component? It would create more confusion than any good it could do and provide a source for a lot of errors and unexpected behavior.
Only one component can be used to inject inside a given class. You can have several subcomponents dependencies installed on it though.
I'm trying to figure out dagger and having a hard time to grasp the concept of the object graphs.
I'm not new to the dependency injection paradigm, I used angular.js in JavaScript and prism in .Net. So I do understand the idea behind it.
What I can't seem to understand is whether the object graph should be actually a single graph, meaning one in all the app and all the dependencies should be injected from it or should I create one for each module.
I want to create an instance of a class with injectables, so should I use an existing object graph or create a new one?
Where is best practice to create multiple mudules ? Should I create object graph per module as a singleton? Create one object graph for all the app that every class should use? Or should I create a new object graph each time I need a new instance?
Thanks
Think of Object Graphs or Components (if using dagger2) as a way to scope objects. You mentioned you used .Net so I am assuming you are familiar with scoping. Rather than creating a graph for each module I would recommend creating an object graph for each scope. A common pattern is to have an Application scope and then "plus" the activity graph/component onto the Application scope. You can have 1 to many modules per component. Modules are more of a way to split dependencies into different files (even thought they may still be in same component). CodePath has a pretty good intro on Dagger including going into scopes as well as multiple modules per component. Best of Luck! https://github.com/codepath/android_guides/wiki/Dependency-Injection-with-Dagger-2
When using Dagger, I found that I'm getting multiple instances of a singleton when I inject it wherever I need it. I've annotated the class and the provides method with #Singleton. Can anyone think of why this is happening?
Edit:
If it helps, I have followed the same structure for my app as the sample application in Dagger's GitHub (https://github.com/square/dagger/tree/master/examples/android-activity-graphs). I'm trying to get the Singleton in the base activity and a couple of third party classes provided using #Provides at the custom Application class. Is it because I'm plus-ing modules at each activity to the original object graph?
(PS : I'm new to Dagger and DI in general, so I'll be grateful if you could provide an explanation so that I may learn. Thanks.)
#Singleton, in Dagger 1.x, acts differently than you might think. The JSR-330 spec definition in the #Singleton javadoc is "one per graph" and that is how Dagger interprets it.
So if you have something that is marked as #Singleton, and it is materialized in your application graph (as opposed to a shorter-lifetime graph), then you get one instance per application.
If you have an item annotated #Singleton that's in the modules you use to configure your activity graph (i.e., that is obtained from the part of a graph specified by a module used in the plus() operation) then you will get one-per-activity-graph.
If you need something to be once-per-application, you need to make sure it gets created as a part of the application graph. You can do this in one of two ways. Either explicitly provide it with an #Provides method from your application module(s), or you can list it as a one of the classes in #Module(injects=...) in an application module.
(If you do not mark it with #Singleton than you will get one per injection site.)
So remember, the graph created by plus() is seen as a separate graph that points to the graph from which it was spawned, and wraps it, can access instances within it, but is not the same graph.
Note - Dagger 2.x improves this, and supports custom scoping annotations, though the mechanism is similar, with one graph (component) per scope annotation, with a parent/child relationship between graphs of wider/narrower lifetimes