NVEnc encoding and MediaCodec decoding producing corrupted frames - android

I'm capturing frames using Desktop Duplication API
hr = pDup->AcquireNextFrame(wait, &frameInfo, &pResource);
preprocessing them (RGB to NV12)
then encoding them using the default NVEnc present for HEVC
pEnc->CreateDefaultEncoderParams(&encInitParams, NV_ENC_CODEC_HEVC_GUID, NV_ENC_PRESET_LOW_LATENCY_DEFAULT_GUID);
pEnc->CreateEncoder(&encInitParams);
Up until here everything works, saving the output into file shows that everything works perfectly.
Sending them over network to Android is a different story. On Android I'm using MediaCodec, I get the first frame from the decoder and use it as csd-0 to configure the async decoder with the correct profile. On my callbacks I have this:
mCodec.setCallback(new MediaCodec.Callback() {
#Override
public void onInputBufferAvailable(#NonNull MediaCodec mediaCodec, int i) {
if(data!=null){
ByteBuffer inputBuffer = mediaCodec.getInputBuffer(i);
inputBuffer.put(data, 0, data.length);
mediaCodec.queueInputBuffer(i, 0, data.length, 0, 0);
}
}
#Override
public void onOutputBufferAvailable(#NonNull MediaCodec mediaCodec, int i, #NonNull MediaCodec.BufferInfo bufferInfo) {
if(data!=null) {
mediaCodec.releaseOutputBuffer(i, true);
}
}
data is being set by an onReceiveMessage(byte[]).
The results that I get are frames that don't fit with each other and the result is just a smudged mess (see below for a screenshot). The only way it works is if I force the NVEnc to only send IDR Frames, and that's heavy on the network. Any ideas on what I'm doing wrong?

Related

Whats wrong with my h264 MediaCodec implementation?

I'm pulling video from a drone that encodes the video stream in h264. It sends each NAL unit via 1-5 UDP packets. I have code that creates a NAL unit out of those packets and removes the header. It then passes it to MediaCodec which then passes it to a Surface object
The output should be a video feed but for some reason, all I get is a black screen. I know that the surface is working as intended because if I futz with the NAL unit I get this green garbage that I think happens when MediaCodec doesn't know what it's looking at.
Anyways here's the section of code that handles the actual decoding. Is there anything actually wrong with it or am I looking for the issue in the wrong place?
//This part initializes the decoder and generally sets up everything needed for the while loop down below
encodedVideo = new ServerSocket(11111, 1460, false, 0);
MediaFormat format = MediaFormat.createVideoFormat(MediaFormat.MIMETYPE_VIDEO_AVC, 1920, 1080);
format.setInteger(MediaFormat.KEY_MAX_INPUT_SIZE, 100000);
try {
m_codec = MediaCodec.createDecoderByType(MediaFormat.MIMETYPE_VIDEO_AVC);
m_codec.configure(format, new Surface(droneSight.getSurfaceTexture()), null, 0);
} catch (Exception e) {
e.printStackTrace();
}
m_codec.start();
running = true;
initialFrame = Arrays.copyOf(encodedVideo.getPacketData(true,true),encodedVideo.getPacketData(true,false).length);
//This section handles the actual grabbing and decoding of each NAL unit. Or it would, if it worked.
while (running) {
byte[] frame = this.getNALUnit();
int inputIndex = m_codec.dequeueInputBuffer(-1);
if (inputIndex >= 0) {
ByteBuffer buf = m_codec.getInputBuffer(inputIndex);
buf.put(frame);
m_codec.queueInputBuffer(inputIndex, 0, frame.length, 0, 0);
}
MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
int outputIndex = m_codec.dequeueOutputBuffer(info, 0);
if (outputIndex >= 0) {
m_codec.releaseOutputBuffer(outputIndex, true);
}
}

How to play raw NAL units in Android MediaCodec

I initially tried How to play raw NAL units in Andoid exoplayer? but I noticed I'm gonna have to do things in low level.
I've found this simple MediaCodec example. As you can see, it's a thread that plays a file on a surface passed to it.
Notice the lines
mExtractor = new MediaExtractor();
mExtractor.setDataSource(filePath);
It looks like that I should create my own MediaExtractor which, instead of extracting the video units from a file, it'll use the h264 NAL units from a buffer I'll provide.
I can then call mExtractor.setDataSource(MediaDataSource dataSource), see MediaDataSource
It has readAt(long position, byte[] buffer, int offset, int size)
This is where it reads the NAL units. However, how should I pass them? I have no information on the structure of the buffer that needs to be read.
Should I pass a byte[] buffer with the NAL units in it, and if so, in which format? What is the offset for? If it's a buffer, shouldn't I just erase the lines that were read and thus have no offset or size?
By the way, the h264 NAL units are streaming ones, they come from RTP packets, not files. I'm gonna get them through C++ and store them on a buffer an try to pass to the mediaExtractor.
UPDATE:
I've been reading a lot about MediaCodec and I think I understand it better. According to https://developer.android.com/reference/android/media/MediaCodec, everything relies on something of this type:
MediaCodec codec = MediaCodec.createByCodecName(name);
MediaFormat mOutputFormat; // member variable
codec.setCallback(new MediaCodec.Callback() {
#Override
void onInputBufferAvailable(MediaCodec mc, int inputBufferId) {
ByteBuffer inputBuffer = codec.getInputBuffer(inputBufferId);
// fill inputBuffer with valid data
…
codec.queueInputBuffer(inputBufferId, …);
}
#Override
void onOutputBufferAvailable(MediaCodec mc, int outputBufferId, …) {
ByteBuffer outputBuffer = codec.getOutputBuffer(outputBufferId);
MediaFormat bufferFormat = codec.getOutputFormat(outputBufferId); // option A
// bufferFormat is equivalent to mOutputFormat
// outputBuffer is ready to be processed or rendered.
…
codec.releaseOutputBuffer(outputBufferId, …);
}
#Override
void onOutputFormatChanged(MediaCodec mc, MediaFormat format) {
// Subsequent data will conform to new format.
// Can ignore if using getOutputFormat(outputBufferId)
mOutputFormat = format; // option B
}
#Override
void onError(…) {
…
}
});
codec.configure(format, …);
mOutputFormat = codec.getOutputFormat(); // option B
codec.start();
// wait for processing to complete
codec.stop();
codec.release();
As you can see, I can pass input buffers and get decoded output buffers. The exact byte formats are still a mystery, but I think that's how it works. Also according to the same article, the usage of ByteBuffers is slow, and Surfaces are preferred. They consume the output buffers automatically. Although there's no tutorial on how to do it, there's a section in the article that says it's almost identical, so I guess I just need to add the additional lines
codec.setInputSurface(Surface inputSurface)
codec.setOutputSurface(Surface outputSurface)
Where inputSurface and outputSurface are Surfaces which I pass to a MediaPlayer which I use (how) to display the video in an activity. And the output buffers will simply not come on onOutputBufferAvailable (because the surface consumes them first), neither onInputBufferAvailable.
So the questions now are: how exactly do I construct a Surface which contains the video buffer, and how do I display a MediaPlayer into an activity
For output I can simply create a Surface and pass to a MediaPlayer and MediaCodec, but what about input? Do I need ByteBuffer for the input anyways, and Surface would just be for using other outputs as inputs?
you first need to remove the NAL units , and feed the raw H264 bytes into this method, how ever in your case your reading from the file , so no need to remove any thing since your not using packets , just feed the data bytes to this method:
rivate void initDecoder(){
try {
writeHeader = true;
if(mDecodeMediaCodec != null){
try{
mDecodeMediaCodec.stop();
}catch (Exception e){}
try{
mDecodeMediaCodec.release();
}catch (Exception e){}
}
mDecodeMediaCodec = MediaCodec.createDecoderByType(MIME_TYPE);
//MIME_TYPE = video/avc in your case
mDecodeMediaCodec.configure(format,mSurfaceView.getHolder().getSurface(),
null,
0);
mDecodeMediaCodec.start();
mDecodeInputBuffers = mDecodeMediaCodec.getInputBuffers();
} catch (IOException e) {
e.printStackTrace();
mLatch.trigger();
}
}
private void decode(byte[] data){
try {
MediaCodec.BufferInfo info = new MediaCodec.BufferInfo();
int inputBufferIndex = mDecodeMediaCodec.dequeueInputBuffer(1000);//
if (inputBufferIndex >= 0) {
ByteBuffer buffer = mDecodeInputBuffers[inputBufferIndex];
buffer.clear();
buffer.put(data);
mDecodeMediaCodec.queueInputBuffer(inputBufferIndex,
0,
data.length,
packet.sequence / 1000,
0);
data = null;
//decodeDataBuffer.clear();
//decodeDataBuffer = null;
}
int outputBufferIndex = mDecodeMediaCodec.dequeueOutputBuffer(info,
1000);
do {
if (outputBufferIndex == MediaCodec.INFO_TRY_AGAIN_LATER) {
//no output available yet
} else if (outputBufferIndex == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED) {
//encodeOutputBuffers = mDecodeMediaCodec.getOutputBuffers();
} else if (outputBufferIndex == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED) {
format = mDecodeMediaCodec.getOutputFormat();
//mediaformat changed
} else if (outputBufferIndex < 0) {
//unexpected result from encoder.dequeueOutputBuffer
} else {
mDecodeMediaCodec.releaseOutputBuffer(outputBufferIndex,
true);
outputBufferIndex = mDecodeMediaCodec.dequeueOutputBuffer(info,
0);
}
} while (outputBufferIndex > 0);
}
please dont forget that iFrame (the first frame bytes) contains sensitive data and MUST be fed to the decoder first

Getting MediaCodec decoder provide video frames in RGBA

I am trying to use a MediaCodec decoder (via the NDK API) to fetch video frames (for further processing) from a .mp4 file. Here is the sample code that sets up the decoder to render to a surface (owned by an ImageReader):
// Omitting most error handling for clarity
AMediaExtractor* ex = AMediaExtractor_new();
media_status_t err = AMediaExtractor_setDataSourceFd(ex, fd /*opened previously*/, outStart, outLen);
close(fd);
int numtracks = AMediaExtractor_getTrackCount(ex);
AMediaCodec* decoder = NULL;
for (int i = 0; i < numtracks; i++) {
AMediaFormat *format = AMediaExtractor_getTrackFormat(ex, i);
const char *s = AMediaFormat_toString(format);
LOGV("track %d format: %s", i, s);
const char *mime;
if (!AMediaFormat_getString(format, AMEDIAFORMAT_KEY_MIME, &mime)) {
LOGV("no mime type");
return JNI_FALSE;
} else if (!strncmp(mime, "video/", 6)) {
AMediaExtractor_selectTrack(ex, i);
decoder = AMediaCodec_createDecoderByType(mime);
AImageReader* imageReader;
ANativeWindow* surface;
// This setting doesn’t works
media_status_t status = AImageReader_new(480, 360, AIMAGE_FORMAT_RGBA_8888, 1, &imageReader);
// This setting works
//media_status_t status = AImageReader_new(480, 360, AIMAGE_FORMAT_YUV_420_888, 1, &imageReader);
status = AImageReader_getWindow(imageReader, &surface);
// Configure the decoder to render to a surface
AMediaCodec_configure(codec, format, surface, NULL, 0);
AMediaCodec_start(codec);
}
AMediaFormat_delete(format);
}
Elsewhere, here below is how I am setting up the callback for the ImageReader:
AImageReader_ImageListener* imageListener = new AImageReader_ImageListener();
imageListener->onImageAvailable = &imageCallback;
AImageReader_setImageListener(imageReader, imageListener);
And finally, here below is how the callback looks like:
void imageCallback(void *context, AImageReader *reader) {
int32_t format;
media_status_t status = AImageReader_getFormat (reader, &format);
AImage* image;
status = AImageReader_acquireLatestImage(reader, &image);
status = AImage_getFormat(image, &format);
// further processing to follow
...
}
The issue that I have been facing is that if I configure the ImageReader with RGBA format, the image in the callback always comes out to be NULL:
// Always NULL for ImageReader configured with RGBA
// OK for ImageReader configured with YUV_420_888
AImage* image;
status = AImageReader_acquireLatestImage(reader, &image);
Am I using the NDK API correctly here? One thing I would like to mention is that the RGBA doesn't appears in the list of decoder capabilities as fetched via the following API (not provided via NDK, tried it in the Java layer):
getCodecInfo().getCapabilitiesForType(…).colorFormats
Video decoders normally don't support outputting in RGB format (as you noticed in the colorformats codec info), so that's why this won't work.
The video decoder output can be transparently converted into RGB if you use a surface texture as the output for the decoder - then the decoded video data is available within an OpenGL context. If you then just do a plain 1:1 copy/rendering of the surface texture and have the OpenGL context set up to render into an ImageReader, I would expect you to get the RGB data you need.
It is a bit roundabout (and I'm not sure how easily accessible all the APIs are in a native code context), but should be doable as far as I know.

Using MediaCodec to save series of images as Video

I am trying to use MediaCodec to save a series of Images, saved as Byte Arrays in a file, to a video file. I have tested these images on a SurfaceView (playing them in series) and I can see them fine. I have looked at many examples using MediaCodec, and here is what I understand (please correct me if I am wrong):
Get InputBuffers from MediaCodec object -> fill it with your frame's
image data -> queue the input buffer -> get coded output buffer ->
write it to a file -> increase presentation time and repeat
However, I have tested this a lot and I end up with one of two cases:
All sample projects I tried to imitate have caused Media server to die when calling queueInputBuffer for the second time.
I tried calling codec.flush() at the end (after saving output buffer to file, although none of the examples I saw did this) and the media server did not die, however, I am not able to open the output video file with any media player, so something is wrong.
Here is my code:
MediaCodec codec = MediaCodec.createEncoderByType(MIMETYPE);
MediaFormat mediaFormat = null;
if(CamcorderProfile.hasProfile(CamcorderProfile.QUALITY_720P)){
mediaFormat = MediaFormat.createVideoFormat(MIMETYPE, 1280 , 720);
} else {
mediaFormat = MediaFormat.createVideoFormat(MIMETYPE, 720, 480);
}
mediaFormat.setInteger(MediaFormat.KEY_BIT_RATE, 700000);
mediaFormat.setInteger(MediaFormat.KEY_FRAME_RATE, 10);
mediaFormat.setInteger(MediaFormat.KEY_COLOR_FORMAT, MediaCodecInfo.CodecCapabilities.COLOR_FormatYUV420SemiPlanar);
mediaFormat.setInteger(MediaFormat.KEY_I_FRAME_INTERVAL, 5);
codec.configure(mediaFormat, null, null, MediaCodec.CONFIGURE_FLAG_ENCODE);
codec.start();
ByteBuffer[] inputBuffers = codec.getInputBuffers();
ByteBuffer[] outputBuffers = codec.getOutputBuffers();
boolean sawInputEOS = false;
int inputBufferIndex=-1,outputBufferIndex=-1;
BufferInfo info=null;
//loop to read YUV byte array from file
inputBufferIndex = codec.dequeueInputBuffer(WAITTIME);
if(bytesread<=0)sawInputEOS=true;
if(inputBufferIndex >= 0){
if(!sawInputEOS){
int samplesiz=dat.length;
inputBuffers[inputBufferIndex].put(dat);
codec.queueInputBuffer(inputBufferIndex, 0, samplesiz, presentationTime, 0);
presentationTime += 100;
info = new BufferInfo();
outputBufferIndex = codec.dequeueOutputBuffer(info, WAITTIME);
Log.i("BATA", "outputBufferIndex="+outputBufferIndex);
if(outputBufferIndex >= 0){
byte[] array = new byte[info.size];
outputBuffers[outputBufferIndex].get(array);
if(array != null){
try {
dos.write(array);
} catch (IOException e) {
e.printStackTrace();
}
}
codec.releaseOutputBuffer(outputBufferIndex, false);
inputBuffers[inputBufferIndex].clear();
outputBuffers[outputBufferIndex].clear();
if(sawInputEOS) break;
}
}else{
codec.queueInputBuffer(inputBufferIndex, 0, 0, presentationTime, MediaCodec.BUFFER_FLAG_END_OF_STREAM);
info = new BufferInfo();
outputBufferIndex = codec.dequeueOutputBuffer(info, WAITTIME);
if(outputBufferIndex >= 0){
byte[] array = new byte[info.size];
outputBuffers[outputBufferIndex].get(array);
if(array != null){
try {
dos.write(array);
} catch (IOException e) {
e.printStackTrace();
}
}
codec.releaseOutputBuffer(outputBufferIndex, false);
inputBuffers[inputBufferIndex].clear();
outputBuffers[outputBufferIndex].clear();
break;
}
}
}
}
codec.flush();
try {
fstream2.close();
dos.flush();
dos.close();
} catch (IOException e) {
e.printStackTrace();
}
codec.stop();
codec.release();
codec = null;
return true;
}
My question is, how can I get a working video from a stream of images using MediaCodec. What am I doing wrong?
Another question (if I am not too greedy), I would like to add an Audio track to this video, can it be done with MediaCodec as well, or must I use FFmpeg?
Note: I know about MediaMux in Android 4.3, however, it is not an option for me as my App must work on Android 4.1+.
Update
Thanks to fadden answer, I was able to reach EOS without Media server dying (Above code is after modification). However, the file I am getting is producing gibberish. Here is a snapshot of the video I get (only works as .h264 file).
My Input image format is YUV image (NV21 from camera preview). I can't get it to be any playable format. I tried all COLOR_FormatYUV420 formats and same gibberish output. And I still can't find away (using MediaCodec) to add audio.
I think you have the right general idea. Some things to be aware of:
Not all devices support COLOR_FormatYUV420SemiPlanar. Some only accept planar. (Android 4.3 introduced CTS tests to ensure that the AVC codec supports one or the other.)
It's not the case that queueing an input buffer will immediately result in the generation of one output buffer. Some codecs may accumulate several frames of input before producing output, and may produce output after your input has finished. Make sure your loops take that into account (e.g. your inputBuffers[].clear() will blow up if it's still -1).
Don't try to submit data and send EOS with the same queueInputBuffer call. The data in that frame may be discarded. Always send EOS with a zero-length buffer.
The output of the codecs is generally pretty "raw", e.g. the AVC codec emits an H.264 elementary stream rather than a "cooked" .mp4 file. Many players won't accept this format. If you can't rely on the presence of MediaMuxer you will need to find another way to cook the data (search around on stackoverflow for ideas).
It's certainly not expected that the mediaserver process would crash.
You can find some examples and links to the 4.3 CTS tests here.
Update: As of Android 4.3, MediaCodec and Camera have no ByteBuffer formats in common, so at the very least you will need to fiddle with the chroma planes. However, that sort of problem manifests very differently (as shown in the images for this question).
The image you added looks like video, but with stride and/or alignment issues. Make sure your pixels are laid out correctly. In the CTS EncodeDecodeTest, the generateFrame() method (line 906) shows how to encode both planar and semi-planar YUV420 for MediaCodec.
The easiest way to avoid the format issues is to move the frames through a Surface (like the CameraToMpegTest sample), but unfortunately that's not possible in Android 4.1.

How to encode non-camera video in Android

I am working on an android application in which a video is dynamically generated by compositing a sequence of animation frames. I tried to use the Android Media Recorder API for this but have not found a way to get it to accept a non-camera source as input. I have been attempting to use a FFMPEG port (based on the Rockplayer build) but am running into difficulties with missing functions since I am using it as an encoder, not a decoder.
The iPhone version of this app uses AVAssetWriter from the AVFoundation framework.
Is there an easier way to do this or am I stuck slugging it out with FFMPEG?
This may help (see the note on resolution though):-
How to encode using the FFMpeg in Android (using H263)
I'm not sure if they did a custom build of ffmpeg, or not, if so they may be able to offer advice on porting a more feature complete version.
-Anthony
Opencv has ViewBase class which takes the input from the camera as a frame and represent the frame as a bitmap , you can extand the class View base and make it for your own use , even though installing opencv on the android isn't very easy.
When you extend SampleCvViewBase you will have the following function which you can use pretty much hard work but the best I can think of.
#Override
protected Bitmap processFrame(VideoCapture capture) {
capture.retrieve(picture, Highgui.CV_CAP_ANDROID_COLOR_FRAME_RGBA);
if (Utils.matToBitmap(picture, bmp))
return bmp;
bmp.recycle();
return null;
}
You can use a pure Java open source library called JCodec ( http://jcodec.org ).
It contains a simple yet working H.264 encoder and MP4 muxer. The class below uses JCodec low level API and should be what you need ( CORRECTED ):
public class SequenceEncoder {
private SeekableByteChannel ch;
private Picture toEncode;
private RgbToYuv420 transform;
private H264Encoder encoder;
private ArrayList<ByteBuffer> spsList;
private ArrayList<ByteBuffer> ppsList;
private CompressedTrack outTrack;
private ByteBuffer _out;
private int frameNo;
private MP4Muxer muxer;
public SequenceEncoder(File out) throws IOException {
this.ch = NIOUtils.writableFileChannel(out);
// Transform to convert between RGB and YUV
transform = new RgbToYuv420(0, 0);
// Muxer that will store the encoded frames
muxer = new MP4Muxer(ch, Brand.MP4);
// Add video track to muxer
outTrack = muxer.addTrackForCompressed(TrackType.VIDEO, 25);
// Allocate a buffer big enough to hold output frames
_out = ByteBuffer.allocate(1920 * 1080 * 6);
// Create an instance of encoder
encoder = new H264Encoder();
// Encoder extra data ( SPS, PPS ) to be stored in a special place of
// MP4
spsList = new ArrayList<ByteBuffer>();
ppsList = new ArrayList<ByteBuffer>();
}
public void encodeImage(BufferedImage bi) throws IOException {
if (toEncode == null) {
toEncode = Picture.create(bi.getWidth(), bi.getHeight(), ColorSpace.YUV420);
}
// Perform conversion
for (int i = 0; i < 3; i++)
Arrays.fill(toEncode.getData()[i], 0);
transform.transform(AWTUtil.fromBufferedImage(bi), toEncode);
// Encode image into H.264 frame, the result is stored in '_out' buffer
_out.clear();
ByteBuffer result = encoder.encodeFrame(_out, toEncode);
// Based on the frame above form correct MP4 packet
spsList.clear();
ppsList.clear();
H264Utils.encodeMOVPacket(result, spsList, ppsList);
// Add packet to video track
outTrack.addFrame(new MP4Packet(result, frameNo, 25, 1, frameNo, true, null, frameNo, 0));
frameNo++;
}
public void finish() throws IOException {
// Push saved SPS/PPS to a special storage in MP4
outTrack.addSampleEntry(H264Utils.createMOVSampleEntry(spsList, ppsList));
// Write MP4 header and finalize recording
muxer.writeHeader();
NIOUtils.closeQuietly(ch);
}
public static void main(String[] args) throws IOException {
SequenceEncoder encoder = new SequenceEncoder(new File("video.mp4"));
for (int i = 1; i < 100; i++) {
BufferedImage bi = ImageIO.read(new File(String.format("folder/img%08d.png", i)));
encoder.encodeImage(bi);
}
encoder.finish();
}
}
You can get JCodec jar from a project web-site.

Categories

Resources