Android - How to slow down battery Drain - android

I am developing a game for Android. It uses a surface view and uses Bitmaps to draw objects each frame, redrawing on the Bitmap objects only when required.
Using the app I noticed that the battery is draining.
I would like to know if there is a library to understand which part I am consuming a lot of battery in or a way to apply the battery safety function in my surface view.
Each bitmap in the game is recycled every time it is instantiated. So apart from this little trick I don't know how to optimize my code.
Can anyone suggest me what I can do?
Thanks in advance

There is no exact solution to minimize battery usage - it depends on your code, and it's all about minimizing CPU & Network usage. Basically you already have powerful Profiler in your Android Studio. It shows CPU, RAM, network & battery usage on dashboards and you can find most heavy part of your code using it. More you optimize your code, more effectively app will use battery.

Related

Heavy CPU analysis while running foreground service

So, I've a Service that is important for applications logic and thus needs to be alive all the time.
First thing is first, I created it as a foreground service.
Whenever user starts to run, Service starts to do a lot of heavy things. It uses FusedLocationAPI different type of sensors and do a lot of different calculations. At this point phone starts to heat up (CPU usage is high). When running stops, heating stops and CPU drops lower.
This makes me think that the main problem is whenever these sensors are used and calculations are made, but there's a lot of possibilities that could cause this and I wanted to understand, how can I deeply analyze batter usage in this case? I read that Battery Historian should be way to go, but the information there is complicated and do not give me much information. How can I use this data to understand which class/runnable/code part is held responsible for the CPU usage? Maybe there's better ways to solve this? Thanks in advance.
Detailed analysis on what's happening using CPU profiler (after suggestion).
Image. Application is opened and few different screens are switch to and from. Nothing special. Phone does not heat up and from CPU analysis everything also looks pretty okay.
2.User starts to run and enter heavy state. The yellow (light green) rectangle shows previously mentioned "important service" that bring important role to application. Called functions does not use too much time of CPU considering the % of whole running trip - which makes me think, I've to look somewhere else..
What I saw is that CPU increases heavily whenever I lock the phone (while service is running. From CPU Bottom Up analysis I cannot understand what is causing the problem (orange rectangle) - looks like a bunch of Android stuff is happening, but it does not give me any clue.
From CPU profiler I do understand that I have a serious problem considering CPU usage, but right now I do not understand what is causing it (which piece of code/class/function). I know for the fact that whenever my important service is created (on app start) I use PARTIAL_WAKE_LOCK to not allow CPU go to sleep and also make service to be alive at all times. As I understand I need to find different solution for this, because CPU drains too much of battery.
How could I found this using only profiler? I now this fact only for code and profiler stack does not tell me much about this (maybe Im not looking at the right place?)
I found out the root cause of high CPU usage.
I did detailed investigation on threads and found out that DefaultDispatcher threads are using A LOT of CPU.
Turns out the has been a bug in Kotlin-Coroutines library and latest version provides fixes. When I did tests I used version 1.3.1, but changing version number to 1.3.3 provided me with big improvements: from 40% usage to 10% CPU usage.

Can Android phone running image processing app 24/7

I'm developing an image processing app on Android phones, which is expected to run 24/7. I've managed to do the following:
Use Camera2 interface to gain better fps.
Grab raw frames, using renderscript to convert to rgb and do image processing using opencv in a background service( no preview ). I got around 20fps after conversion to rgb at 1280x960 on LG G4.
So my questions are:
Is there anything else I need to optimize to minimize the memory and CPU usage?
Any chance that this application can run 24/7? Is delegating all the camera operations and processing to the background service sufficient to allow it run 24/7? When I leave it running, I can still feel the heat from the camera and its surrounding area.
Any suggestion would be appreciated. Thanks.
UPDATE 1
The app runs on LG G4 using Camera2 interface and do image processing in the background with the screen off, got too hot and the phone turned off itself after a few hours. What can I do to overcome this?
about the second question. I think the app can not run 24/7 because the phone will close itself because of the heat.
Before answering to your question i must say that i am also new to image processing with android (but not to image processing field).
For the question one:
May be yes. Because image processing tasks are much memory intensive you may need to optimize your app in order to avoid things like memory leak(even if the android runtime perform routine garbage collection) .
check the following links
link one
may be useful
when it comes to pixel level operation ( when you avoid using inbuilt functions of opencv or what ever the library you are using and do access and process pixels manually) it will be too slow. I am saying this based on my experience on my laptop. Hoping that you are using opencv for your app just take a look at the following opencv site ( it is for python but you can get the idea)
take an idea from this
and also this SO answer: SO answer
A tip i can remember: try to reduce Mat variable copying (copying Mat objects to other Mat objects) as much as you can
Question number two:
I will go with answer given by user7746903. This answer also linked with the memory that will be consumed by your background app. There will be much more memory intensive app running on background so it depends. Thank you.
For the first question:
I feel its worth mentioning that you should by pass java as much as possible. Ie. using Java as the interfacial layer, then using JNI C as the call loop.
eg:
Get texture from camera2 > supply texture to C function > call render script/ compute shaders from C and other processing functions > call java function to render to screen.
This speeds up CPU performance and reduces memory warnings (especially when rapid allocation and freeing of memory).

Box2d Light consumes too much battery

I'm making a simple game with my friends in Android using libgdx game engine.
We use "conelight" object of box2dlights extension in the game. Our problem is that after putting "conelight" in a game, our app starts to consume too much battery.
Is there a way too prevent this ?
Any help will be appreciated
Thank you
Calculating lights is computational intensive and thus increases energy consumption.
There are a few things you can check to try to minimize that:
Check if you only create those lights once (for example not in your render method)
Reduce the distance, cone degree and number of rays.
Do you use box2d or do you cast shadows? If not you can get an equal effect with light textures.
And then it might depend on the android version or how old the phone is.

Do android animations use a lot more CPU power?

I am using Animations in my application while
switching among Activities
populating ListView.
now I am wondering if it uses a lot more CPU power which uses more Battery.
Thanks.
Well, any calculation by the cpu uses power, and I have to believe that you have to do a lot more calculation to animate those items, so I would say yes, it would affect the battery life.
I can't imagine it would be drastic though... people use Live Wallpapers, and some searching on the nets shows that those (depending on the device) can use an extra 2-4% power, and that's for something that runs 100% of the time when visible, as opposed to list creation which happens in a finite amount of time.
Upshot: I wouldn't worry about it.
Sure it does, but i don't believe is significant at all. Those are really simple operations when compared to whole process of launching an activity or loading lists. you can test it if you like by using traceview.
TraceView Sample

how to measure and improve battery use in iPhone/iPad game (Android also)

My game uses too much battery. I don't know exactly how much it uses as compared to comparable games, but it uses too much. Players complain that it uses a lot, and a number of them note that it makes their device "run hot". I'm just starting to investigate this and wanted to ask some theoretical and practical questions to narrow the search space. This is mainly about the iOS version of my game, but probably many of the same issues affect the Android version. Sorry to ask many sub-questions, but they all seemed so interrelated I thought it best to keep them together.
Side notes: My game doesn't do network access (called out in several places as a big battery drain) and doesn't consume a lot of battery in the background; it's the foreground running that is the problem.
(1) I know there are APIs to read the battery level, so I can do some automated testing. My question here is: About how long (or perhaps: about how much battery drain) do I need to let the thing run to get a reliable reading? For instance, if it runs for 10 minutes is that reliable? If it drains 10% of the battery, is that reliable? Or is it better to run for more like an hour (or, say, see how long it takes the battery to drain 50%)? What I'm asking here is how sensitive/reliable the battery meter is, so I know how long each test run needs to be.
(2) I'm trying to understand what are the likely causes of the high battery use. Below I list some possible factors. Please help me understand which ones are the most likely culprits:
(2a) As with a lot of games, my game needs to draw the full screen on each frame. It runs at about 30 fps. I know that Apple says to "only refresh the screen as much as you need to", but I pretty much need to draw every frame. Actually, I could put some work into only drawing the parts of the screen that had changed, but in my case that will still be most of the screen. And in any case, even if I can localize the drawing to only part of the screen, I'm still making an OpenGL swap buffers call 30 times per second, so does it really matter that I've worked hard to draw a bit less?
(2b) As I draw the screen elements, there is a certain amount of floating point math that goes on (e.g., in computing texture UV coordinates), and some (less) double precision math that goes on. I don't know how expensive these are, battery-wise, as compared to similar integer operations. I could probably cache a lot of these values to not have to repeatedly compute them, if that was a likely win.
(2c) I do a certain amount of texture switching when rendering the scene. I had previously only been worried about this making the game too slow (it doesn't), but now I also wonder whether reducing texture switching would reduce battery use.
(2d) I'm not sure if this would be practical for me but: I have been reading about shaders and OpenCL, and I want to understand if I were to unload some of the CPU processing to the GPU, whether that would likely save battery (in addition to presumably running faster for vector-type operations). Or would it perhaps use even more battery on the GPU than on the CPU?
I realize that I can narrow down which factors are at play by disabling certain parts of the game and doing iterative battery test runs (hence part (1) of the question). It's just that that disabling is not trivial and there are enough potential culprits that I thought I'd ask for general advice first.
Try reading this article:
Android Documents on optimization
What works well for me, is decreasing the use for garbage collection e.g. when programming for a desktop computer, you're (or i'm) used to defining variables inside loops when they are not needed out side of the loop, this causes a massive use of garbage collection (and i'm not talking about primitive vars, but big objects.
try avoiding things like that.
One little tip that really helped me get Battery usage (and warmth of the device!) down was to throttle FPS in my custom OpenGL Engine.
Especially while the scene is static (e.g. a turn-based game or the user tapped pause) throttle down FPS.
Or throttle if the user isn't responsive for more then 10 seconds, like a screensaver on a desktop pc. In the real world users often get distracted while using mobile devices. Don't let your app drain battery while your user figures out what subway-station he's in ;)
Also on the iPhone, sometimes 60FPS is the default, throttling this manually to 30 FPS is barely visible and safes you about half of the gpu cycles (and therefore a lot of battery!).

Categories

Resources