Suspension functions can be called only within coroutine body - android

I checked the other questions but none of them seem to address my issue.
I have two suspend funs in my HomeViewModel and I'm calling them in my HomeFragment (with a spinner text parameter).
The two suspend functions in HomeViewModel:
suspend fun tagger(spinner: Spinner){
withContext(Dispatchers.IO){
val vocab: String = inputVocab.value!!
var tagger = Tagger(
spinner.getSelectedItem().toString() + ".tagger"
)
val sentence = tagger.tagString(java.lang.String.valueOf(vocab))
tagAll(sentence)
}
}
suspend fun tagAll(vocab: String){
withContext(Dispatchers.IO){
if (inputVocab.value == null) {
statusMessage.value = Event("Please enter sentence")
}
else {
insert(Vocab(0, vocab))
inputVocab.value = null
}
}
}
and this is how I call them in the HomeFragment:
GlobalScope.launch (Dispatchers.IO) {
button.setOnClickListener {
homeViewModel.tagger(binding.spinner)
}
}
At tagger I get the error "Suspension functions can be called only within coroutine body". But it's already inside a global scope. How can I avoid this problem?

But it's already inside a global scope.
The call to button.onSetClickListener() is in a launched coroutine from a CoroutineScope. However, the lambda expression that you are passing to onSetClickListener() is a separate object, mapped to a separate onClick() function, and that function call is not part of that coroutine.
You would need to change this to:
button.setOnClickListener {
GlobalScope.launch (Dispatchers.IO) {
homeViewModel.tagger(binding.spinner)
}
}
BTW, you may wish to review Google's best practices for coroutines in Android, particularly "The ViewModel should create coroutines".

Related

Kotlin empty global variable list out of the function [duplicate]

(Disclaimer: There are a ton of questions which arise from people asking about data being null/incorrect when using asynchronous operations through requests such as facebook,firebase, etc. My intention for this question was to provide a simple answer for that problem to everyone starting out with asynchronous operations in android)
I'm trying to get data from one of my operations, when I debug it using breakpoints or logs, the values are there, but when I run it they are always null, how can I solve this ?
Firebase
firebaseFirestore.collection("some collection").get()
.addOnSuccessListener(new OnSuccessListener<QuerySnapshot>() {
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
//I want to return these values I receive here...
});
//...and use the returned value here.
Facebook
GraphRequest request = GraphRequest.newGraphPathRequest(
accessToken,
"some path",
new GraphRequest.Callback() {
#Override
public void onCompleted(GraphResponse response) {
//I want to return these values I receive here...
}
});
request.executeAsync();
//...and use the returned value here.
Kotlin coroutine
var result: SomeResultType? = null
someScope.launch {
result = someSuspendFunctionToRetrieveSomething()
//I want to return the value I received here...
}
Log.d("result", result.toString()) //...but it is still null here.
Etc.
What is a Synchronous/Asynchronous operation ?
Well, Synchronous waits until the task has completed. Your code executes "top-down" in this situation.
Asynchronous completes a task in the background and can notify you when it is complete.
If you want to return the values from an async operation through a method/function, you can define your own callbacks in your method/function to use these values as they are returned from these operations.
Here's how for Java
Start off by defining an interface :
interface Callback {
void myResponseCallback(YourReturnType result);//whatever your return type is: string, integer, etc.
}
next, change your method signature to be like this :
public void foo(final Callback callback) { // make your method, which was previously returning something, return void, and add in the new callback interface.
next up, wherever you previously wanted to use those values, add this line :
callback.myResponseCallback(yourResponseObject);
as an example :
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
// create your object you want to return here
String bar = document.get("something").toString();
callback.myResponseCallback(bar);
})
now, where you were previously calling your method called foo:
foo(new Callback() {
#Override
public void myResponseCallback(YourReturnType result) {
//here, this result parameter that comes through is your api call result to use, so use this result right here to do any operation you previously wanted to do.
}
});
}
How do you do this for Kotlin ?
(as a basic example where you only care for a single result)
start off by changing your method signature to something like this:
fun foo(callback:(YourReturnType) -> Unit) {
.....
then, inside your asynchronous operation's result :
firestore.collection("something")
.document("document").get()
.addOnSuccessListener {
val bar = it.get("something").toString()
callback(bar)
}
then, where you would have previously called your method called foo, you now do this :
foo() { result->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
// Be aware that code outside the callback here will run
// BEFORE the code above, and cannot rely on any data that may
// be set inside the callback.
if your foo method previously took in parameters :
fun foo(value:SomeType, callback:(YourType) -> Unit)
you simply change it to :
foo(yourValueHere) { result ->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
these solutions show how you can create a method/function to return values from async operations you've performed through the use of callbacks.
However, it is important to understand that, should you not be interested in creating a method/function for these:
#Override
public void onSuccess(SomeApiObjectType someApiResult) {
// here, this `onSuccess` callback provided by the api
// already has the data you're looking for (in this example,
// that data would be `someApiResult`).
// you can simply add all your relevant code which would
// be using this result inside this block here, this will
// include any manipulation of data, populating adapters, etc.
// this is the only place where you will have access to the
// data returned by the api call, assuming your api follows
// this pattern
})
There's a particular pattern of this nature I've seen repeatedly, and I think an explanation of what's happening would help. The pattern is a function/method that calls an API, assigning the result to a variable in the callback, and returns that variable.
The following function/method always returns null, even if the result from the API is not null.
Kotlin
fun foo(): String? {
var myReturnValue: String? = null
someApi.addOnSuccessListener { result ->
myReturnValue = result.value
}.execute()
return myReturnValue
}
Kotlin coroutine
fun foo(): String? {
var myReturnValue: String? = null
lifecycleScope.launch {
myReturnValue = someApiSuspendFunction()
}
return myReturnValue
}
Java 8
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(result -> fooValue = result.getValue())
.execute();
return fooValue;
}
Java 7
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(new OnSuccessListener<String>() {
public void onSuccess(Result<String> result) {
fooValue = result.getValue();
}
}).execute();
return fooValue;
}
The reason is that when you pass a callback or listener to an API function, that callback code will only be run some time in the future, when the API is done with its work. By passing the callback to the API function, you are queuing up work, but the current function (foo() in this case) returns immediately before that work begins and before that callback code is run.
Or in the case of the coroutine example above, the launched coroutine is very unlikely to complete before the function that started it.
Your function that calls the API cannot return the result that is returned in the callback (unless it's a Kotlin coroutine suspend function). The solution, explained in the other answer, is to make your own function take a callback parameter and not return anything.
Alternatively, if you're working with coroutines, you can make your function suspend instead of launching a separate coroutine. When you have suspend functions, somewhere in your code you must launch a coroutine and handle the results within the coroutine. Typically, you would launch a coroutine in a lifecycle function like onCreate(), or in a UI callback like in an OnClickListener.
Other answer explains how to consume APIs based on callbacks by exposing a similar callbacks-based API in the outer function. However, recently Kotlin coroutines become more and more popular, especially on Android and while using them, callbacks are generally discouraged for such purposes. Kotlin approach is to use suspend functions instead. Therefore, if our application uses coroutines already, I suggest not propagating callbacks APIs from 3rd party libraries to the rest of our code, but converting them to suspend functions.
Converting callbacks to suspend
Let's assume we have this callback API:
interface Service {
fun getData(callback: Callback<String>)
}
interface Callback<in T> {
fun onSuccess(value: T)
fun onFailure(throwable: Throwable)
}
We can convert it to suspend function using suspendCoroutine():
private val service: Service
suspend fun getData(): String {
return suspendCoroutine { cont ->
service.getData(object : Callback<String> {
override fun onSuccess(value: String) {
cont.resume(value)
}
override fun onFailure(throwable: Throwable) {
cont.resumeWithException(throwable)
}
})
}
}
This way getData() can return the data directly and synchronously, so other suspend functions can use it very easily:
suspend fun otherFunction() {
val data = getData()
println(data)
}
Note that we don't have to use withContext(Dispatchers.IO) { ... } here. We can even invoke getData() from the main thread as long as we are inside the coroutine context (e.g. inside Dispatchers.Main) - main thread won't be blocked.
Cancellations
If the callback service supports cancelling of background tasks then it is best to cancel when the calling coroutine is itself cancelled. Let's add a cancelling feature to our callback API:
interface Service {
fun getData(callback: Callback<String>): Task
}
interface Task {
fun cancel();
}
Now, Service.getData() returns Task that we can use to cancel the operation. We can consume it almost the same as previously, but with small changes:
suspend fun getData(): String {
return suspendCancellableCoroutine { cont ->
val task = service.getData(object : Callback<String> {
...
})
cont.invokeOnCancellation {
task.cancel()
}
}
}
We only need to switch from suspendCoroutine() to suspendCancellableCoroutine() and add invokeOnCancellation() block.
Example using Retrofit
interface GitHubService {
#GET("users/{user}/repos")
fun listRepos(#Path("user") user: String): Call<List<Repo>>
}
suspend fun listRepos(user: String): List<Repo> {
val retrofit = Retrofit.Builder()
.baseUrl("https://api.github.com/")
.build()
val service = retrofit.create<GitHubService>()
return suspendCancellableCoroutine { cont ->
val call = service.listRepos(user)
call.enqueue(object : Callback<List<Repo>> {
override fun onResponse(call: Call<List<Repo>>, response: Response<List<Repo>>) {
if (response.isSuccessful) {
cont.resume(response.body()!!)
} else {
// just an example
cont.resumeWithException(Exception("Received error response: ${response.message()}"))
}
}
override fun onFailure(call: Call<List<Repo>>, t: Throwable) {
cont.resumeWithException(t)
}
})
cont.invokeOnCancellation {
call.cancel()
}
}
}
Native support
Before we start converting callbacks to suspend functions, it is worth checking whether the library that we use does support suspend functions already: natively or with some extension. Many popular libraries like Retrofit or Firebase support coroutines and suspend functions. Usually, they either provide/handle suspend functions directly or they provide suspendable waiting on top of their asynchronous task/call/etc. object. Such waiting is very often named await().
For example, Retrofit supports suspend functions directly since 2.6.0:
interface GitHubService {
#GET("users/{user}/repos")
suspend fun listRepos(#Path("user") user: String): List<Repo>
}
Note that we not only added suspend, but also we no longer return Call, but the result directly. Now, we can use it without all this enqueue() boilerplate:
val repos = service.listRepos(user)
TL;DR The code you pass to these APIs (e.g. in the onSuccessListener) is a callback, and it runs asynchronously (not in the order it is written in your file). It runs at some point later in the future to "call back" into your code. Without using a coroutine to suspend the program, you cannot "return" data retrieved in a callback from a function.
What is a callback?
A callback is a piece of code you pass to some third party library that it will run later when some event happens (e.g. when it gets data from a server). It is important to remember that the callback is not run in the order you wrote it - it may be run much later in the future, could run multiple times, or may never run at all. The example callback below will run Point A, start the server fetching process, run Point C, exit the function, then some time in the distant future may run Point B when the data is retrieved. The printout at Point C will always be empty.
fun getResult() {
// Point A
var r = ""
doc.get().addOnSuccessListener { result ->
// The code inside the {} here is the "callback"
// Point B - handle result
r = result // don't do this!
}
// Point C - r="" still here, point B hasn't run yet
println(r)
}
How do I get the data from the callback then?
Make your own interface/callback
Making your own custom interface/callback can sometimes make things cleaner looking but it doesn't really help with the core question of how to use the data outside the callback - it just moves the aysnc call to another location. It can help if the primary API call is somewhere else (e.g. in another class).
// you made your own callback to use in the
// async API
fun getResultImpl(callback: (String)->Unit) {
doc.get().addOnSuccessListener { result ->
callback(result)
}
}
// but if you use it like this, you still have
// the EXACT same problem as before - the printout
// will always be empty
fun getResult() {
var r = ""
getResultImpl { result ->
// this part is STILL an async callback,
// and runs later in the future
r = result
}
println(r) // always empty here
}
// you still have to do things INSIDE the callback,
// you could move getResultImpl to another class now,
// but still have the same potential pitfalls as before
fun getResult() {
getResultImpl { result ->
println(result)
}
}
Some examples of how to properly use a custom callback: example 1, example 2, example 3
Make the callback a suspend function
Another option is to turn the async method into a suspend function using coroutines so it can wait for the callback to complete. This lets you write linear-looking functions again.
suspend fun getResult() {
val result = suspendCoroutine { cont ->
doc.get().addOnSuccessListener { result ->
cont.resume(result)
}
}
// the first line will suspend the coroutine and wait
// until the async method returns a result. If the
// callback could be called multiple times this may not
// be the best pattern to use
println(result)
}
Re-arrange your program into smaller functions
Instead of writing monolithic linear functions, break the work up into several functions and call them from within the callbacks. You should not try to modify local variables within the callback and return or use them after the callback (e.g. Point C). You have to move away from the idea of returning data from a function when it comes from an async API - without a coroutine this generally isn't possible.
For example, you could handle the async data in a separate method (a "processing method") and do as little as possible in the callback itself other than call the processing method with the received result. This helps avoid a lot of the common errors with async APIs where you attempt to modify local variables declared outside the callback scope or try to return things modified from within the callback. When you call getResult it starts the process of getting the data. When that process is complete (some time in the future) the callback calls showResult to show it.
fun getResult() {
doc.get().addOnSuccessListener { result ->
showResult(result)
}
// don't try to show or return the result here!
}
fun showResult(result: String) {
println(result)
}
Example
As a concrete example here is a minimal ViewModel showing how one could include an async API into a program flow to fetch data, process it, and display it in an Activity or Fragment. This is written in Kotlin but is equally applicable to Java.
class MainViewModel : ViewModel() {
private val textLiveData = MutableLiveData<String>()
val text: LiveData<String>
get() = textLiveData
fun fetchData() {
// Use a coroutine here to make a dummy async call,
// this is where you could call Firestore or other API
// Note that this method does not _return_ the requested data!
viewModelScope.launch {
delay(3000)
// pretend this is a slow network call, this part
// won't run until 3000 ms later
val t = Calendar.getInstance().time
processData(t.toString())
}
// anything out here will run immediately, it will not
// wait for the "slow" code above to run first
}
private fun processData(d: String) {
// Once you get the data you may want to modify it before displaying it.
val p = "The time is $d"
textLiveData.postValue(p)
}
}
A real API call in fetchData() might look something more like this
fun fetchData() {
firestoreDB.collection("data")
.document("mydoc")
.get()
.addOnCompleteListener { task ->
if (task.isSuccessful) {
val data = task.result.data
processData(data["time"])
}
else {
textLiveData.postValue("ERROR")
}
}
}
The Activity or Fragment that goes along with this doesn't need to know anything about these calls, it just passes actions in by calling methods on the ViewModel and observes the LiveData to update its views when new data is available. It cannot assume that the data is available immediately after a call to fetchData(), but with this pattern it doesn't need to.
The view layer can also do things like show and hide a progress bar while the data is being loaded so the user knows it's working in the background.
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
val model: MainViewModel by viewModels()
// Observe the LiveData and when it changes, update the
// state of the Views
model.text.observe(this) { processedData ->
binding.text.text = processedData
binding.progress.visibility = View.GONE
}
// When the user clicks the button, pass that action to the
// ViewModel by calling "fetchData()"
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
model.fetchData()
}
binding.progress.visibility = View.GONE
}
}
The ViewModel is not strictly necessary for this type of async workflow - here is an example of how to do the same thing in the activity
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
// When the user clicks the button, trigger the async
// data call
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
fetchData()
}
binding.progress.visibility = View.GONE
}
private fun fetchData() {
lifecycleScope.launch {
delay(3000)
val t = Calendar.getInstance().time
processData(t.toString())
}
}
private fun processData(d: String) {
binding.progress.visibility = View.GONE
val p = "The time is $d"
binding.text.text = p
}
}
(and, for completeness, the activity XML)
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<TextView
android:id="#+id/text"
android:layout_margin="16dp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>
<Button
android:id="#+id/get_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="16dp"
android:text="Get Text"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/text"
/>
<ProgressBar
android:id="#+id/progress"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="48dp"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/get_text"
/>
</androidx.constraintlayout.widget.ConstraintLayout>

ArrayList Is Empty Outside the Coroutine Scope [duplicate]

(Disclaimer: There are a ton of questions which arise from people asking about data being null/incorrect when using asynchronous operations through requests such as facebook,firebase, etc. My intention for this question was to provide a simple answer for that problem to everyone starting out with asynchronous operations in android)
I'm trying to get data from one of my operations, when I debug it using breakpoints or logs, the values are there, but when I run it they are always null, how can I solve this ?
Firebase
firebaseFirestore.collection("some collection").get()
.addOnSuccessListener(new OnSuccessListener<QuerySnapshot>() {
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
//I want to return these values I receive here...
});
//...and use the returned value here.
Facebook
GraphRequest request = GraphRequest.newGraphPathRequest(
accessToken,
"some path",
new GraphRequest.Callback() {
#Override
public void onCompleted(GraphResponse response) {
//I want to return these values I receive here...
}
});
request.executeAsync();
//...and use the returned value here.
Kotlin coroutine
var result: SomeResultType? = null
someScope.launch {
result = someSuspendFunctionToRetrieveSomething()
//I want to return the value I received here...
}
Log.d("result", result.toString()) //...but it is still null here.
Etc.
What is a Synchronous/Asynchronous operation ?
Well, Synchronous waits until the task has completed. Your code executes "top-down" in this situation.
Asynchronous completes a task in the background and can notify you when it is complete.
If you want to return the values from an async operation through a method/function, you can define your own callbacks in your method/function to use these values as they are returned from these operations.
Here's how for Java
Start off by defining an interface :
interface Callback {
void myResponseCallback(YourReturnType result);//whatever your return type is: string, integer, etc.
}
next, change your method signature to be like this :
public void foo(final Callback callback) { // make your method, which was previously returning something, return void, and add in the new callback interface.
next up, wherever you previously wanted to use those values, add this line :
callback.myResponseCallback(yourResponseObject);
as an example :
#Override
public void onSuccess(QuerySnapshot documentSnapshots) {
// create your object you want to return here
String bar = document.get("something").toString();
callback.myResponseCallback(bar);
})
now, where you were previously calling your method called foo:
foo(new Callback() {
#Override
public void myResponseCallback(YourReturnType result) {
//here, this result parameter that comes through is your api call result to use, so use this result right here to do any operation you previously wanted to do.
}
});
}
How do you do this for Kotlin ?
(as a basic example where you only care for a single result)
start off by changing your method signature to something like this:
fun foo(callback:(YourReturnType) -> Unit) {
.....
then, inside your asynchronous operation's result :
firestore.collection("something")
.document("document").get()
.addOnSuccessListener {
val bar = it.get("something").toString()
callback(bar)
}
then, where you would have previously called your method called foo, you now do this :
foo() { result->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
// Be aware that code outside the callback here will run
// BEFORE the code above, and cannot rely on any data that may
// be set inside the callback.
if your foo method previously took in parameters :
fun foo(value:SomeType, callback:(YourType) -> Unit)
you simply change it to :
foo(yourValueHere) { result ->
// here, this result parameter that comes through is
// whatever you passed to the callback in the code aboce,
// so use this result right here to do any operation
// you previously wanted to do.
}
these solutions show how you can create a method/function to return values from async operations you've performed through the use of callbacks.
However, it is important to understand that, should you not be interested in creating a method/function for these:
#Override
public void onSuccess(SomeApiObjectType someApiResult) {
// here, this `onSuccess` callback provided by the api
// already has the data you're looking for (in this example,
// that data would be `someApiResult`).
// you can simply add all your relevant code which would
// be using this result inside this block here, this will
// include any manipulation of data, populating adapters, etc.
// this is the only place where you will have access to the
// data returned by the api call, assuming your api follows
// this pattern
})
There's a particular pattern of this nature I've seen repeatedly, and I think an explanation of what's happening would help. The pattern is a function/method that calls an API, assigning the result to a variable in the callback, and returns that variable.
The following function/method always returns null, even if the result from the API is not null.
Kotlin
fun foo(): String? {
var myReturnValue: String? = null
someApi.addOnSuccessListener { result ->
myReturnValue = result.value
}.execute()
return myReturnValue
}
Kotlin coroutine
fun foo(): String? {
var myReturnValue: String? = null
lifecycleScope.launch {
myReturnValue = someApiSuspendFunction()
}
return myReturnValue
}
Java 8
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(result -> fooValue = result.getValue())
.execute();
return fooValue;
}
Java 7
private String fooValue = null;
private String foo() {
someApi.addOnSuccessListener(new OnSuccessListener<String>() {
public void onSuccess(Result<String> result) {
fooValue = result.getValue();
}
}).execute();
return fooValue;
}
The reason is that when you pass a callback or listener to an API function, that callback code will only be run some time in the future, when the API is done with its work. By passing the callback to the API function, you are queuing up work, but the current function (foo() in this case) returns immediately before that work begins and before that callback code is run.
Or in the case of the coroutine example above, the launched coroutine is very unlikely to complete before the function that started it.
Your function that calls the API cannot return the result that is returned in the callback (unless it's a Kotlin coroutine suspend function). The solution, explained in the other answer, is to make your own function take a callback parameter and not return anything.
Alternatively, if you're working with coroutines, you can make your function suspend instead of launching a separate coroutine. When you have suspend functions, somewhere in your code you must launch a coroutine and handle the results within the coroutine. Typically, you would launch a coroutine in a lifecycle function like onCreate(), or in a UI callback like in an OnClickListener.
Other answer explains how to consume APIs based on callbacks by exposing a similar callbacks-based API in the outer function. However, recently Kotlin coroutines become more and more popular, especially on Android and while using them, callbacks are generally discouraged for such purposes. Kotlin approach is to use suspend functions instead. Therefore, if our application uses coroutines already, I suggest not propagating callbacks APIs from 3rd party libraries to the rest of our code, but converting them to suspend functions.
Converting callbacks to suspend
Let's assume we have this callback API:
interface Service {
fun getData(callback: Callback<String>)
}
interface Callback<in T> {
fun onSuccess(value: T)
fun onFailure(throwable: Throwable)
}
We can convert it to suspend function using suspendCoroutine():
private val service: Service
suspend fun getData(): String {
return suspendCoroutine { cont ->
service.getData(object : Callback<String> {
override fun onSuccess(value: String) {
cont.resume(value)
}
override fun onFailure(throwable: Throwable) {
cont.resumeWithException(throwable)
}
})
}
}
This way getData() can return the data directly and synchronously, so other suspend functions can use it very easily:
suspend fun otherFunction() {
val data = getData()
println(data)
}
Note that we don't have to use withContext(Dispatchers.IO) { ... } here. We can even invoke getData() from the main thread as long as we are inside the coroutine context (e.g. inside Dispatchers.Main) - main thread won't be blocked.
Cancellations
If the callback service supports cancelling of background tasks then it is best to cancel when the calling coroutine is itself cancelled. Let's add a cancelling feature to our callback API:
interface Service {
fun getData(callback: Callback<String>): Task
}
interface Task {
fun cancel();
}
Now, Service.getData() returns Task that we can use to cancel the operation. We can consume it almost the same as previously, but with small changes:
suspend fun getData(): String {
return suspendCancellableCoroutine { cont ->
val task = service.getData(object : Callback<String> {
...
})
cont.invokeOnCancellation {
task.cancel()
}
}
}
We only need to switch from suspendCoroutine() to suspendCancellableCoroutine() and add invokeOnCancellation() block.
Example using Retrofit
interface GitHubService {
#GET("users/{user}/repos")
fun listRepos(#Path("user") user: String): Call<List<Repo>>
}
suspend fun listRepos(user: String): List<Repo> {
val retrofit = Retrofit.Builder()
.baseUrl("https://api.github.com/")
.build()
val service = retrofit.create<GitHubService>()
return suspendCancellableCoroutine { cont ->
val call = service.listRepos(user)
call.enqueue(object : Callback<List<Repo>> {
override fun onResponse(call: Call<List<Repo>>, response: Response<List<Repo>>) {
if (response.isSuccessful) {
cont.resume(response.body()!!)
} else {
// just an example
cont.resumeWithException(Exception("Received error response: ${response.message()}"))
}
}
override fun onFailure(call: Call<List<Repo>>, t: Throwable) {
cont.resumeWithException(t)
}
})
cont.invokeOnCancellation {
call.cancel()
}
}
}
Native support
Before we start converting callbacks to suspend functions, it is worth checking whether the library that we use does support suspend functions already: natively or with some extension. Many popular libraries like Retrofit or Firebase support coroutines and suspend functions. Usually, they either provide/handle suspend functions directly or they provide suspendable waiting on top of their asynchronous task/call/etc. object. Such waiting is very often named await().
For example, Retrofit supports suspend functions directly since 2.6.0:
interface GitHubService {
#GET("users/{user}/repos")
suspend fun listRepos(#Path("user") user: String): List<Repo>
}
Note that we not only added suspend, but also we no longer return Call, but the result directly. Now, we can use it without all this enqueue() boilerplate:
val repos = service.listRepos(user)
TL;DR The code you pass to these APIs (e.g. in the onSuccessListener) is a callback, and it runs asynchronously (not in the order it is written in your file). It runs at some point later in the future to "call back" into your code. Without using a coroutine to suspend the program, you cannot "return" data retrieved in a callback from a function.
What is a callback?
A callback is a piece of code you pass to some third party library that it will run later when some event happens (e.g. when it gets data from a server). It is important to remember that the callback is not run in the order you wrote it - it may be run much later in the future, could run multiple times, or may never run at all. The example callback below will run Point A, start the server fetching process, run Point C, exit the function, then some time in the distant future may run Point B when the data is retrieved. The printout at Point C will always be empty.
fun getResult() {
// Point A
var r = ""
doc.get().addOnSuccessListener { result ->
// The code inside the {} here is the "callback"
// Point B - handle result
r = result // don't do this!
}
// Point C - r="" still here, point B hasn't run yet
println(r)
}
How do I get the data from the callback then?
Make your own interface/callback
Making your own custom interface/callback can sometimes make things cleaner looking but it doesn't really help with the core question of how to use the data outside the callback - it just moves the aysnc call to another location. It can help if the primary API call is somewhere else (e.g. in another class).
// you made your own callback to use in the
// async API
fun getResultImpl(callback: (String)->Unit) {
doc.get().addOnSuccessListener { result ->
callback(result)
}
}
// but if you use it like this, you still have
// the EXACT same problem as before - the printout
// will always be empty
fun getResult() {
var r = ""
getResultImpl { result ->
// this part is STILL an async callback,
// and runs later in the future
r = result
}
println(r) // always empty here
}
// you still have to do things INSIDE the callback,
// you could move getResultImpl to another class now,
// but still have the same potential pitfalls as before
fun getResult() {
getResultImpl { result ->
println(result)
}
}
Some examples of how to properly use a custom callback: example 1, example 2, example 3
Make the callback a suspend function
Another option is to turn the async method into a suspend function using coroutines so it can wait for the callback to complete. This lets you write linear-looking functions again.
suspend fun getResult() {
val result = suspendCoroutine { cont ->
doc.get().addOnSuccessListener { result ->
cont.resume(result)
}
}
// the first line will suspend the coroutine and wait
// until the async method returns a result. If the
// callback could be called multiple times this may not
// be the best pattern to use
println(result)
}
Re-arrange your program into smaller functions
Instead of writing monolithic linear functions, break the work up into several functions and call them from within the callbacks. You should not try to modify local variables within the callback and return or use them after the callback (e.g. Point C). You have to move away from the idea of returning data from a function when it comes from an async API - without a coroutine this generally isn't possible.
For example, you could handle the async data in a separate method (a "processing method") and do as little as possible in the callback itself other than call the processing method with the received result. This helps avoid a lot of the common errors with async APIs where you attempt to modify local variables declared outside the callback scope or try to return things modified from within the callback. When you call getResult it starts the process of getting the data. When that process is complete (some time in the future) the callback calls showResult to show it.
fun getResult() {
doc.get().addOnSuccessListener { result ->
showResult(result)
}
// don't try to show or return the result here!
}
fun showResult(result: String) {
println(result)
}
Example
As a concrete example here is a minimal ViewModel showing how one could include an async API into a program flow to fetch data, process it, and display it in an Activity or Fragment. This is written in Kotlin but is equally applicable to Java.
class MainViewModel : ViewModel() {
private val textLiveData = MutableLiveData<String>()
val text: LiveData<String>
get() = textLiveData
fun fetchData() {
// Use a coroutine here to make a dummy async call,
// this is where you could call Firestore or other API
// Note that this method does not _return_ the requested data!
viewModelScope.launch {
delay(3000)
// pretend this is a slow network call, this part
// won't run until 3000 ms later
val t = Calendar.getInstance().time
processData(t.toString())
}
// anything out here will run immediately, it will not
// wait for the "slow" code above to run first
}
private fun processData(d: String) {
// Once you get the data you may want to modify it before displaying it.
val p = "The time is $d"
textLiveData.postValue(p)
}
}
A real API call in fetchData() might look something more like this
fun fetchData() {
firestoreDB.collection("data")
.document("mydoc")
.get()
.addOnCompleteListener { task ->
if (task.isSuccessful) {
val data = task.result.data
processData(data["time"])
}
else {
textLiveData.postValue("ERROR")
}
}
}
The Activity or Fragment that goes along with this doesn't need to know anything about these calls, it just passes actions in by calling methods on the ViewModel and observes the LiveData to update its views when new data is available. It cannot assume that the data is available immediately after a call to fetchData(), but with this pattern it doesn't need to.
The view layer can also do things like show and hide a progress bar while the data is being loaded so the user knows it's working in the background.
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
val model: MainViewModel by viewModels()
// Observe the LiveData and when it changes, update the
// state of the Views
model.text.observe(this) { processedData ->
binding.text.text = processedData
binding.progress.visibility = View.GONE
}
// When the user clicks the button, pass that action to the
// ViewModel by calling "fetchData()"
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
model.fetchData()
}
binding.progress.visibility = View.GONE
}
}
The ViewModel is not strictly necessary for this type of async workflow - here is an example of how to do the same thing in the activity
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
// When the user clicks the button, trigger the async
// data call
binding.getText.setOnClickListener {
binding.progress.visibility = View.VISIBLE
fetchData()
}
binding.progress.visibility = View.GONE
}
private fun fetchData() {
lifecycleScope.launch {
delay(3000)
val t = Calendar.getInstance().time
processData(t.toString())
}
}
private fun processData(d: String) {
binding.progress.visibility = View.GONE
val p = "The time is $d"
binding.text.text = p
}
}
(and, for completeness, the activity XML)
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
<TextView
android:id="#+id/text"
android:layout_margin="16dp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"/>
<Button
android:id="#+id/get_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_margin="16dp"
android:text="Get Text"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/text"
/>
<ProgressBar
android:id="#+id/progress"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="48dp"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toBottomOf="#+id/get_text"
/>
</androidx.constraintlayout.widget.ConstraintLayout>

How to enqueue sequential coroutines blocks

What I'm trying to do
I have an app that's using Room with Coroutines to save search queries in the database. It's also possible to add search suggestions and later on I retrieve this data to show them on a list. I've also made it possible to "pin" some of those suggestions.
My data structure is something like this:
#Entity(
tableName = "SEARCH_HISTORY",
indices = [Index(value = ["text"], unique = true)]
)
data class Suggestion(
#PrimaryKey(autoGenerate = true)
#ColumnInfo(name = "suggestion_id")
val suggestionId: Long = 0L,
val text: String,
val type: SuggestionType,
#ColumnInfo(name = "insert_date")
val insertDate: Calendar
)
enum class SuggestionType(val value: Int) {
PINNED(0), HISTORY(1), SUGGESTION(2)
}
I have made the "text" field unique to avoid repeated suggestions with different states/types. E.g.: A suggestion that's a pinned item and a previously queried text.
My Coroutine setup looks like this:
private val parentJob: Job = Job()
private val IO: CoroutineContext
get() = parentJob + Dispatchers.IO
private val MAIN: CoroutineContext
get() = parentJob + Dispatchers.Main
private val COMPUTATION: CoroutineContext
get() = parentJob + Dispatchers.Default
And my DAOs are basically like this:
#Insert(onConflict = OnConflictStrategy.REPLACE)
suspend fun insert(obj: Suggestion): Long
#Insert(onConflict = OnConflictStrategy.REPLACE)
suspend fun insert(objList: List<Suggestion>): List<Long>
I also have the following public functions to insert the data into the database:
fun saveQueryToDb(query: String, insertDate: Calendar) {
if (query.isBlank()) {
return
}
val suggestion = Suggestion(
text = query,
insertDate = insertDate,
type = SuggestionType.HISTORY
)
CoroutineScope(IO).launch {
suggestionDAO.insert(suggestion)
}
}
fun addPin(pin: String) {
if (pin.isBlank()) {
return
}
val suggestion = Suggestion(
text = pin,
insertDate = Calendar.getInstance(),
type = SuggestionType.PINNED
)
CoroutineScope(IO).launch {
suggestionDAO.insert(suggestion)
}
}
fun addSuggestions(suggestions: List<String>) {
addItems(suggestions, SuggestionType.SUGGESTION)
}
private fun addItems(items: List<String>, suggestionType: SuggestionType) {
if (items.isEmpty()) {
return
}
CoroutineScope(COMPUTATION).launch {
val insertDate = Calendar.getInstance()
val filteredList = items.filterNot { it.isBlank() }
val suggestionList = filteredList.map { History(text = it, insertDate = insertDate, suggestionType = suggestionType) }
withContext(IO) {
suggestionDAO.insert(suggestionList)
}
}
}
There are also some other methods, but let's focus on the ones above.
EDIT: All of the methods above are part of a lib that I made, they're are not made suspend because I don't want to force a particular type of programming to the user, like forcing to use Rx or Coroutines when using the lib.
The problem
Let's say I try to add a list of suggestions using the addSuggestions() method stated above, and that I also try to add a pinned suggestion using the addPin() method. The pinned text is also present in the suggestion list.
val list = getSuggestions() // Getting a list somewhere
addSuggestions(list)
addPin(list.first())
When I try to do this, sometimes the pin is added first and then it's overwritten by the suggestion present in the list, which makes me think I might've been dealing with some sort of race condition. Since the addSuggestions() method has more data to handle, and both methods will run in parallel, I believe the addPin() method is completing first.
Now, my Coroutines knowledge is pretty limited and I'd like to know if there's a way to enqueue those method calls and make sure they'll execute in the exact same order I invoked them, that must be strongly guaranteed to avoid overriding data and getting funky results later on. How can I achieve such behavior?
I'd follow the Go language slogan "Don't communicate by sharing memory; share memory by communicating", that means instead of maintaining atomic variables or jobs and trying to synchronize between them, model your operations as messages and use Coroutines actors to handle them.
sealed class Message {
data AddSuggestions(val suggestions: List<String>) : Message()
data AddPin(val pin: String) : Message()
}
And in your class
private val parentScope = CoroutineScope(Job())
private val actor = parentScope.actor<Message>(Dispatchers.IO) {
for (msg in channel) {
when (msg) {
is Message.AddSuggestions -> TODO("Map to the Suggestion and do suggestionDAO.insert(suggestions)")
is Message.AddPin -> TODO("Map to the Pin and do suggestionDAO.insert(pin)")
}
}
}
fun addSuggestions(suggestions: List<String>) {
actor.offer(Message.AddSuggestions(suggestions))
}
fun addPin(pin: String) {
actor.offer(Message.AddPin(pin))
}
By using actors you'll be able to queue messages and they will be processed in FIFO order.
By default when you call .launch{}, it launches a new coroutine without blocking the current thread and returns a reference to the coroutine as a Job. The coroutine is canceled when the resulting job is canceled.
It doesn't care or wait for other parts of your code it just runs.
But you can pass a parameter to basically tell it to run immediately or wait for other Coroutine to finish(LAZY).
For Example:
val work_1 = CoroutineScope(IO).launch( start = CoroutineStart.LAZY ){
//do dome work
}
val work_2 = CoroutineScope(IO).launch( start = CoroutineStart.LAZY ){
//do dome work
work_1.join()
}
val work_3 = CoroutineScope(IO).launch( ) {
//do dome work
work_2.join()
}
When you execute the above code first work_3 will finish and invoke work_2 when inturn invoke Work_1 and so on,
The summary of coroutine start options is:
DEFAULT -- immediately schedules coroutine for execution according to its context
LAZY -- starts coroutine lazily, only when it is needed
ATOMIC -- atomically (in a non-cancellable way) schedules coroutine for execution according to its context
UNDISPATCHED -- immediately executes coroutine until its first suspension point in the current thread.
So by default when you call .launch{} start = CoroutineStart.DEFAULT is passed because it is default parameter.
Don't launch coroutines from your database or repository. Use suspending functions and then switch dispatchers like:
suspend fun addPin(pin: String) {
...
withContext(Dispatchers.IO) {
suggestionDAO.insert(suggestion)
}
}
Then from your ViewModel (or Activity/Fragment) make the call:
fun addSuggestionsAndPinFirst(suggestions: List<Suggestion>) {
myCoroutineScope.launch {
repository.addSuggestions(suggestions)
repository.addPin(suggestions.first())
}
}
Why do you have a separate addPin() function anyways? You can just modify a suggestion and then store it:
fun pinAndStoreSuggestion(suggestion: Suggestion) {
myCoroutineScope.launch {
repository.storeSuggestion(suggestion.copy(type = SuggestionType.PINNED)
}
}
Also be careful using a Job like that. If any coroutine fails all your coroutines will be cancelled. Use a SupervisorJob instead. Read more on that here.
Disclaimer: I do not approve of the solution below. I'd rather use an old-fashioned ExecutorService and submit() my Runnable's
So if you really want to synchronize your coroutines in a way that the first function called is also the first one to write to your database. (I'm not sure it is guaranteed since your DAO functions are also suspending and Room uses it's own threads too). Try something like the following unit test:
class TestCoroutineSynchronization {
private val jobId = AtomicInteger(0)
private val jobToRun = AtomicInteger(0)
private val jobMap = mutableMapOf<Int, () -> Unit>()
#Test
fun testCoroutines() = runBlocking {
first()
second()
delay(2000) // delay so our coroutines finish
}
private fun first() {
val jobId = jobId.getAndIncrement()
CoroutineScope(SupervisorJob() + Dispatchers.Default).launch {
delay(1000) // intentionally delay your first coroutine
withContext(Dispatchers.IO) {
submitAndTryRunNextJob(jobId) { println(1) }
}
}
}
private fun second() {
val jobId = jobId.getAndIncrement()
CoroutineScope(SupervisorJob()).launch(Dispatchers.IO) {
submitAndTryRunNextJob(jobId) { println(2) }
}
}
private fun submitAndTryRunNextJob(jobId: Int, action: () -> Unit) {
synchronized(jobMap) {
jobMap[jobId] = action
tryRunNextJob()
}
}
private fun tryRunNextJob() {
var action = jobMap.remove(jobToRun.get())
while (action != null) {
action()
action = jobMap.remove(jobToRun.incrementAndGet())
}
}
}
So what I do on each call is increment a value (jobId) that is later used to prioritize what action to run first. Since you are using suspending function you probably need to add that modifier to the action submitted too (e.g. suspend () -> Unit).

The withContext coroutine is not working. Using Kotlin in Android

I've been mulling this over for some time now and I just can't get it to work.
So in brief, I have a Splash Activity from where I call another activity that contains my ViewModel. The ViewModel in simple terms just needs to sequentially run function A(which is getfbdata below; it is a network call.). And only after this function completes, it should run function B (which is dosavefbdata below; save info to DB.). Again, it should wait for function B to complete before running the main thread function, function C(which is confirm first below; it checks whether function B has completed by getting the result from function B (dosavefbdata below). If function C is positive, it closes the Splash activity.
Suffice to say, none of the above works. Println results show all functions were run sequentially without waiting for each to complete. Lastly, SplashActivity().killActivity() call on function C did not work.
Note: withContext does not require to await() on the suspended functions right? I also tried using viewModelScope.async instead of viewModelScope.launch.
I would really appreciate your help here. Thanks in advance.
*Under SplashActivity:
fun killActivity(){
finish()
}
*Under onCreate(SplashActivity):
CoroutingClassViewModel(myc).initialize()
**
class CoroutingClassViewModel(val myc: Context): ViewModel() {
fun initialize() {
viewModelScope.launch(Dispatchers.Main) {
try {
val fbdata = withContext(Dispatchers.IO) { getfbdata() }
val test1 = withContext(Dispatchers.IO) { test1(fbdata) }
val savedfbdata = withContext(Dispatchers.IO) { dosavefbdata(fbdata,myc) }
val confirmfirst = { confirmfunc(savedfbdata,myc) }
println("ran savedfbdata.")
} catch (exception: Exception) {
Log.d(TAG, "$exception handled !")
}
}
}
fun confirmfunc(savedfbdata: Boolean, myc: Context){
if (savedfbdata==true){
SplashActivity().killActivity()
}
}
suspend fun getfbdata(): MutableList<FirebaseClass> {
return withContext(Dispatchers.IO) {
//perform network call
return#withContext fbdata
}
}
suspend fun dosavefbdata(fbdata: MutableList<FirebaseClass>,myc: Context): Boolean{
return withContext(Dispatchers.IO) {
//save to database
return#withContext true
}
}
suspend fun test1(fbdata: MutableList<FirebaseClass>){
return withContext(Dispatchers.IO) {
println("test1: fbdata is: $fbdata")
}
}
}
Use AndroidViewModel if you want to have Context in it:
class CoroutingClassViewModel(myc: Application) : AndroidViewModel(myc) { ... }
In onCreate method of SplashActivity activity instantiate the view model like this:
val vm = ViewModelProvider(this)[CoroutingClassViewModel::class.java]
vm.initialize()
In CoroutingClassViewModel class create LiveData object to notify activity about operations completion:
val completion = MutableLiveData<Boolean>()
fun confirmfunc(savedfbdata: Boolean, myc: Context) {
if (savedfbdata) {
completion.postValue(true)
}
}
In your SplashActivity use this code to observe completion:
vm.completion.observe(this, Observer {
if (it) killActivity()
})
You use withContext(Dispatchers.IO) function two times for the same operation. Don't do that. For example in this code:
val fbdata = withContext(Dispatchers.IO) { getfbdata() }
if we look at getfbdata function we see that function withContext(Dispatchers.IO) is already called there. So get rid of repeated calls:
val fbdata = getfbdata()
I had same issue with withContext(Dispatcher.IO), I thought that switching coroutine context doesn't work, while in fact in splash screen i launched super long operation on Dispatcher.IO, then later when trying to use the same Dispatcher.IO it didn't work or in other words it waited until the first work in splash screen finished then started the new work.

How do you call a suspend function inside a SAM?

I'm trying to create a Flow that needs to emit values from a callback but I can't call the emit function since the SAM is a normal function
Here's the class with the SAM from a library that I can't really modify it the way I need it to be.
class ValueClass {
fun registerListener(listener: Listener) {
...
}
interface Listener {
fun onNewValue(): String
}
}
And here's my take on creating the Flow object
class MyClass(private val valueClass: ValueClass) {
fun listenToValue = flow<String> {
valueClass.registerListener { value ->
emit(value) // Suspension functions can only be called on coroutine body
}
}
}
I guess it would've been simple if I could change the ValueClass but in this case, I can't. I've been wrapping my head around this and trying to look for implementations.
At least from what I know so far, one solution would be to use GlobalScope like this
class MyClass(private val valueClass: ValueClass) {
fun listenToValue = flow<String> {
valueClass.registerListener { value ->
GlobalScope.launch {
emit(value)
}
}
}
}
Now, this works but I don't want to use GlobalScope since I'll be using viewModelScope to tie it to my app's lifecycle.
Is there any way to work around this?
Thanks in advance. Any help would be greatly appreciated!
You can use callbackFlow to create a Flow from the callback. It will look something like:
fun listenToValue(): Flow<String> = callbackFlow {
valueClass.registerListener { value ->
trySend(value)
channel.close() // close channel if no more values are expected
}
awaitClose { /*unregister listener*/ }
}
Or if only one value is expected from the callback, you can use suspendCoroutine or suspendCancellableCoroutine. It this case listenToValue() function must be suspend and later called from a coroutine(e.g. someScope.launch):
suspend fun listenToValue(): String = suspendCoroutine { continuation ->
valueClass.registerListener { value ->
continuation.resumeWith(value)
}
}

Categories

Resources