I read document, but I don't still get it.
The differences between this
private val myClass: MyClass = mockk(relaxed = true)
and this.
private val myClass: MyClass = mockk()
What I understood is if relaxed is true. Then, all the member fields or methods will return default values. Otherwise, not. is that correct understanding?
If so, setting always relaxed = true is better. But In this video, Ryan uses both. why?
https://youtu.be/60KFJTb_HwU?t=1015
If you're trying to call a mock method that doesn't know what to return and relaxed is not set to true you'll get an exception thrown. This is made, so tests are less likely to introduce unpredictable behavior, due to the default values returned by methods that the developer does not purposely mock.
In the linked video the view methods are probably never called, therefore no "relaxed" is necessary. You can also use "relaxedUnitFun", which works only for methods returning Unit, handy for example for classes responsible for events logging.
This is a double-edged weapon though, as "relaxing" everything deprives you of the security mechanism mentioned above. If this is what you want, you can also configure this globally, check https://mockk.io/#settings-file
To quote their documentation:
A relaxed mock is the mock that returns some simple value for all functions. This allows you to skip specifying behavior for each case, while still stubbing things you need. For reference types, chained mocks are returned.
source
Related
I found the answer for Kotlin Lazy objects, using isInitialized() here: Kotlin: Check if lazy val has been initialised
But seems like dagger.Lazy doesn't have the same public method.
This is how I lazily inject using Dagger:
#Inject internal lateinit var someService: dagger.Lazy<SomeService>
How to check if someService is already initialized without calling someService.get() which will initialize it? Other than introducing a boolean flag and keep track of it ourselves..
Thanks!
There isn't a way to check; Lazy only has one method, get, making it a functional interface or "Single Abstract Method (SAM)" interface much like JSR330's Provider, Guava's Supplier, and JDK8 Supplier.
This abstraction is important, because in Dagger the definition of Lazy is more complicated and there is more than one implementation. For scoped bindings, the internal InstanceFactory itself implements Lazy, so the built in Provider<Lazy<T>> available for each T in the graph can be implemented using a class ProviderOfLazy that can simply return the internal Provider or InstanceFactory rather than creating a new wrapper instance. With that in mind, the instance of Lazy you interact with might be a shared one, so a hypothetical isInitialized might be ambiguous: Does it mark that the scoped binding was ever accessed, or just the local Lazy injection point you requested? Would that behavior change based on whether you mark the binding scoped or not in a faraway Module file? You could also imagine an implementation where every Lazy injection got its own instance, and each would locally track whether it had ever had its get called regardless of scoping. This is in contrast to Kotlin's Lazy, in which each instance wraps exactly one initializer function and consequently has less ambiguity.
Also, Kotlin's Lazy has multiple synchronization modes from which you can select, some of which have undefined behavior when called concurrently. isInitialized is never synchronized in any of those modes, so in a concurrent environment you might receive false while the value is in mid-construction, or it may even be fully constructed on a different thread and the value is simply not yet visible from the thread calling isInitialized.
If you need to be able to check on a Lazy-like status, you'll need to specify how wide you care about construction and how thread-safe you want the result to be, which is custom enough to warrant your own implementation.
Recently I migrated my project to ViewBinding and as a way to make it less verbose, I decided to expose it through get() property and it seems to be working fine, but some other developers are saying that it may cause memory issues because it's assigning a value to a variable, which I think it's not doing this, since it's exposing through the get() property. Example:
class MyActivity : AppCompatActivity() {
private val textView: TextView get() = binding.textViewID
private val binding by lazy { MyActivityBinding.inflate(layoutInflater) }
}
can someone confirm this?
When you define a property with a getter and no initial assignment, there is no backing field generated. So no, this is not wasting memory.
The way you wrote it on one line looks very similar to code where there is no getter defined and you are assigning an initial value to a backing field. Maybe your colleagues misread your code. I usually define getters on the next line so it looks distinct. Otherwise, it is easy to accidentally omit get() when you intended to include it.
Even if it were creating a backing property, surely you don't have enough views referenced that it would even approach an amount of memory use that you should waste your time worrying about it.
I have to following variable declaration:
var baseItemList: MutableList<BaseDataItem>? = null
when writing the line:
baseDataItemsList?.get(position).getObjectTypeNum()
I'm getting an error saying that:
Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable receiver of type BaseDataItem?
but, get method doesn't return a BaseDataItem?, only a BaseDataItem since the BaseDataItem inside the brackets is without a question mark.
Can someone explain me this error, and why i have to add this question mark?
Looking at this code:
baseDataItemsList?.get(position)?.getObjectTypeNum()
The call ?.get(position) returns the position if baseDataItemsList is not null, but otherwise returns null. So even though baseDataItemsList.get() would return a non-nullable BaseDataItem (only possible to call if baseDataItemsList is not nullable), the null-safe baseDataItemsList?.get() call returns a nullable BaseDataItem?, where the null condition indicates that baseDataItemsList is null. So you must use ?.getObjectTypeNum() to account for this.
Side note: in my opinion combining var with a mutable collection is often a code smell, because you're making something mutable in two different ways, which makes it more error-prone to work with.
Make use of Kotlins scope functions, for example the let scope to avoid that warning:
baseDataItemsList?.let { baseDataItemList ->
baseDataItemList.get(position).getObjectTypeNum()
}
That way you assert that baseDataItemList cannot be null inside the let scope. If you want to read more about that topic, take a look into the documentation
This is a serious question, I promise. I've spent the last 2 hours reading as many definitions of Mock that I could find and none explain this to me.
I've got a class I want to test and that class requires a mapper class as part of it's primary constructor:
open class PoiListViewModel #Inject constructor(
private val mapper: PoiMapper
) : ViewModel() {
In my unit test I have the following code:
//Mock objects needed to instantiate the class under test
#Mock lateinit var mapper: PoiMapper
// Class being tested
lateinit var poiListViewModel: PoiListViewModel
#Before
fun setup() {
MockitoAnnotations.initMocks(this)
poiListViewModel = PoiListViewModel(mapper)
}
My question to you all smart developers is, what exactly is a mock? And specifically how much of my original class does it replicate?
I'll tell you my assumed definition. A mock is a fake stand-in class that stands in for my real class, but that it does nothing except keep track of what method calls get sent to it. If I want the mock to have any functionality I need to stub that functionality in.
At least that's my ignorant view of mocks. But I'm apparently wront because in my unit test, my "mock" mapper class seems to be an actual mapper class. If I debug my unit test I see it walk through all the code of my mapper class. I see it returning converted data.
Here's the mapper class code (if it matters):
open class PoiMapper #Inject constructor() {
fun mockTest(num: Int): Int{
return num *23
}
fun mapToPresentation(domainModel: Poi_Domain): Poi_Presentation {
var test = 3
var results = mockTest(test)
return Poi_Presentation(domainModel.id,domainModel.name,domainModel.description,
domainModel.img_url,domainModel.latitude,domainModel.longitude,domainModel.imgFocalpointX,
domainModel.imgFocalpointY,domainModel.collection,domainModel.collectionPosition,
domainModel.release,domainModel.stampText)
}
}
Can someone explain it to me, how much of a mock is a Mockito mock? Did I instantiate the mocks incorrectly? Can someone give me a better way to think of mocks so I can wrap my head around all this?
Your understanding of mocks is correct. You're bumping into Kotlin's final-by-default behavior, as an implementation detail of Mockito.
Mockito mocks (as distinct from Mockito spies) are defined to take the place of your class instance. Unless you've stubbed them to return otherwise, they record all interactions and return default dummy values (zero, an empty string, an empty list, null, etc). You can confirm that they collaborated correctly with your system-under-test by stubbing return values (when/thenReturn), stubbing specific behaviors for methods (when/thenAnswer), or by checking that certain methods were called (verify) and retrieving the specific instances they were called with (ArgumentCaptor).
Under the hood, Mockito achieves this by generating a subclass of the class you're mocking, and overriding all methods to delegate to Mockito's internal handler. This is what gives Mockito the power to override the behavior silently: Your system-under-test thinks it's calling your dependency, but your code is using Java's virtual method dispatch to override your dependency's behavior.
Here's the trick: Java methods are virtual by default, unless you mark them final. In Kotlin, functions are closed by default, unless you mark them open. (I'm going to keep calling them final, because that's the definition at play in the JVM or Android Dexer, which is reading the bytecode that Kotlin generates anyway.) When the virtual machine is sure of a reference's type based on static typing, and you're calling a final method, the compiler is allowed to inline that implementation's code (JLS 8.4.3.3) because you've asserted that the method cannot be overridden and any code that tries to override it will fail at compilation. Mockito's generated code isn't compiled this way, and Mockito can't detect this case.
In your case, mapToPresentation is not open, so the compiler sees it as final and does not keep the virtual method dispatch that would let Mockito override the behavior. Your definition of mocking is right, and your code would be right, except that Kotlin is closed-by-default where Java is open-by-default. Besides, you really do rely on the function being open, because you'd like it to be called with a different implementation than the one in the function.
Trivially, you could just make all functions open that you intend to override, or use Mockito 2.1+'s built-in feature to mock final methods. However, as a general best practice you want an object that behaves like a PoiMapper even if it doesn't follow your specific PoiMapper implementation. That might be a good reason for an interface/impl split, such that your class PoiListViewModel takes a PoiMapper interface. In production you can provide a PoiMapperImpl as you have, but Mockito can generate an arbitrary implementation of the PoiMapper interface without worrying about whether PoiMapperImpl and its functions are open or closed.
Have you added the annotation
#RunWith(MockitoJUnitRunner.class)
to your test class?
In the last year I've become a mobile developer and a functional programming admirer.
In each of the mobile arenas there are components with lifecycle methods that make up the meat of the app. The following will use Android and Kotlin as examples, but the same applies to iOS and Swift.
In Android, there are Activity's with lifecycle methods like onCreate(). You might also define a function, onButtonClicked(), which will do exactly what the name describes.
For the purposes of the question, let's say there's a variable defined in onCreate() that is used in a button click handler onButtonClickedPrintMessageLength() (This is usually the case - onCreate() is essentially Activity's setup method).
The example class would look like this:
class ExampleActivity: Activity() {
var savedStateMessage: String? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
savedStateMessage = "Hello World!"
}
fun onButtonClickedPrintMessageLength() {
System.out.println(savedStateMessage?.length)
}
}
Notice the declaration of savedStateMessage as a String? (nullable string) and the use of ?. (null safe call). These are required because the compiler cant guarantee that onCreate() will be called before onButtonClickedPrintMessageLength(). As developers though, we know that onCreate will always be called first* **.
My question is how can I tell the compiler about the guaranteed order of these methods and eliminate the null checking behavior?
* I suppose it's possible to new up our ExampleActivity and call onButtonClickedPrintMessageLength() directly, thus sidestepping the Android framework and lifecycle methods, but the compiler/JVM would likely run into an error before anything interesting happened.
** The guarantee that onCreate is called first is provided by the Android framework, which is an external source of truth and might break/function differently in the future. Seeing that all Android apps are based on this source of truth though, I believe it's safe to trust.
Although this won't answer your actual question, in Kotlin you can use lateinit to tell the compiler that you'll initialize a var at a later point in time:
lateinit var savedStateMessage: String
You'll get a very specific UninitializedPropertyAccessException if you try to use this variable before initializing it. This feature is useful in use cases like JUnit, where you'd usually initialize variables in #Before-annotated method, and Android Activitys, where you don't have access to the constructor and initialize stuff in onCreate().
As mentioned in another answer, lateinit is available as an option to defer initialization to a later point in a guaranteed lifecycle. An alternative is to use a delegate:
var savedStateMessage: String by Delegates.notNull()
Which is equivalent, in that it will report an error if you access the variable before initializing it.
In Swift this is where you would use an implicitly-unwrapped Optional:
class Example: CustomStringConvertible {
var savedStateMessage: String! // implicitly-unwrapped Optional<String>
var description: String { return savedStateMessage }
init() {
savedStateMessage = "Hello World!"
}
}
print(Example()) // => "Hello World!\n"
By using the operator ! at the end of String in the second line of the example you are promising that the variable will be set before it can be used. This is accomplished in the init method of the example. It's still an Optional but code can treat it as a String since it will be automatically unwrapped before each use. You must take care that the variable is never set to nil when it might be accessed or a runtime exception may be generated.