Run a kotlin flow once but have it received twice downstream - android

Scenario
I have a hot flow EventHandler.sharedFlow emitted on a button click.
The flow is received by Repository that performs some action in OnEach{}.
The repository flow is then received by two event collectors EventCollectorA and EventCollectorB.
The event collector flows are then combined and collected in MyViewModel.
Issue
The two event collectors cause onEach{...} to run twice on every click. However I only want to run onEach{...} once and have it received in two event collectors. How can I achieve this?
Note: I am using Hilt to ony have one instance of Repository, EventCollectorA and EventCollectorB
Code
#AndroidEntryPoint
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val binding = ActivityMainBinding.inflate(layoutInflater)
setContentView(binding.root)
val viewModel = ViewModelProvider(this).get(MyViewModel::class.java)
binding.buttonB.setOnClickListener {
viewModel.userClickEvent("Click Event")
}
}
}
#HiltViewModel
class MyViewModel #Inject constructor(
private val eventHandler: EventHandler,
private val eventCollectorA: EventCollectorA,
private val eventCollectorB: EventCollectorB,
) : ViewModel() {
fun userClickEvent(event: String) = viewModelScope.launch {
eventHandler.userClick(event)
}
init {
viewModelScope.launch {
combine(
eventCollectorA.sharedFlow,
eventCollectorB.sharedFlow
) { a, b ->
{/*do something*/}
}.collect()
}
}
}
class EventHandler {
private val _sharedFlow = MutableSharedFlow<String>()
val sharedFlow = _sharedFlow.asSharedFlow()
suspend fun userClick(event: String) {
_sharedFlow.emit(event)
}
}
class Repository constructor(
eventHandler: EventHandler,
) {
val sharedFlow = eventHandler.sharedFlow
.filter { it == "Click Event" }
.onEach {/*do something*/} /*onEach is called twice on click event. I only want it called once*/
.onStart { emit("Begin") }
}
class EventCollectorA constructor(repository: Repository) {
val sharedFlow = repository.sharedFlow.map {
it
}
}
class EventCollectorB constructor(repository: Repository) {
val sharedFlow = repository.sharedFlow.map {
it
}
}

The problem here is that while eventHandler.sharedFlow is a SharedFlow, after applying any operators to it, we get a regular, not shared flow. filter(), onEach() and onStart() are running separately for each new collection. If you want to share them between collections, you need to construct another shared flow, after applying them:
val sharedFlow = eventHandler.sharedFlow
.filter { it == "Click Event" }
.onEach {/*do something*/}
.onStart { emit("Begin") }
.shareIn(...)
Further explanation
We need to be aware that a regular, cold flow is not like a live stream of data. It is more like a source of such streams and with each new collection we start entirely new stream of data. For example, if we create a flow using flow { } builder, we have only a single flow object, but if we invoke collect {} multiple times on it, then for each collection the lambda will be invoked again and again. Similarly, each operator that we use to construct a new flow, is also invoked separately for each collection.
You can think of shareIn() as creating a service that observes its upstream flow and duplicates its data to each of its downstream flows. No matter how many times we collect the shared flow, upstream flow will be collected only once. Operators above shareIn() will be invoked once, while operators below shareIn() will be invoked separately for each collection.

Related

How to prevent data duplication caused by LiveData observation in Fragment?

I'm subscribed to an observable in my Fragment, the observable listens for some user input from three different sources.
The main issue is that once I navigate to another Fragment and return to the one with the subscription, the data is duplicated as the observable is handled twice.
What is the correct way to handle a situation like this?
I've migrated my application to a Single-Activity and before it, the subscription was made in the activity without any problem.
Here is my Fragment code:
#AndroidEntryPoint
class ProductsFragment : Fragment() {
#Inject
lateinit var sharedPreferences: SharedPreferences
private var _binding: FragmentProductsBinding? = null
private val binding get() = _binding!!
private val viewModel: ProductsViewModel by viewModels()
private val scanner: CodeReaderViewModel by activityViewModels()
private fun observeBarcode() {
scanner.barcode.observe(viewLifecycleOwner) { barcode ->
if (barcode.isNotEmpty()) {
if (binding.searchView.isIconified) {
addProduct(barcode) // here if the fragment is resumed from a backstack the data is duplicated.
}
if (!binding.searchView.isIconified) {
binding.searchView.setQuery(barcode, true)
}
}
}
}
private fun addProduct(barcode: String) {
if (barcode.isEmpty()) {
return
}
viewModel.insert(barcode)
}
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)
viewModel.start(args.documentId)
if (args.documentType == "Etichette") {
binding.cvLabels.visibility = View.VISIBLE
}
initUI()
observe()
}
private fun observe() {
observeBarcode()
observeProducts()
observeLoading()
observeLast()
}
}
Unfortunately, LiveData is a terribly bad idea (the way it was designed), Google insisted till they kinda phased it out (but not really since it's still there) that "it's just a value holder"...
Anyway... not to rant too much, the solution you have to use can be:
Use The "SingleLiveEvent" (method is officially "deprecated now" but... you can read more about it here).
Follow the "official guidelines" and use a Flow instead, as described in the official guideline for handling UI Events.
Update: Using StateFlow
The way to collect the flow is, for e.g. in a Fragment:
viewLifecycleOwner.lifecycleScope.launch {
repeatOnLifecycle(Lifecycle.State.STARTED) { // or RESUMED
viewModel.yourFlow.collectLatest { ... } // or collect { ... }
}
}
For that in your ViewModel you'd expose something like:
Warning: Pseudo-Code
// Imagine your state is represented in this sealed class
sealed class State {
object Idle: State
object Loading: State
data class Success(val name: String): State
data class Failure(val reason: String): State
}
// You need an initial state
private val _yourFlow = MutableStateFlow(State.Idle)
val yourFlow: StateFlow<State> = _yourFlow
Then you can emit using
_yourFlow.emit(State.Loading)
Every time you call
scanner.barcode.observe(viewLifecycleOwner){
}
You are creating a new anonymous observer. So every new call to observe will add another observer that will get onChanged callbacks. You could move this observer out to be a property. With this solution observe won't register new observers.
Try
class property
val observer = Observer<String> { onChanged() }
inside your method
scanner.barcode.observe(viewLifecycleOwner, observer)
Alternatively you could keep your observe code as is but move it to a Fragment's callback that only gets called once fex. onCreate(). onCreate gets called only once per fragment instance whereas onViewCreated gets called every time the fragment's view is created.

How to observe the return value from a Repository class in a ViewModel?

I have an android application using an MVVM architecture. On a button click, I launch a coroutine that calls a ViewModel method to make a network request. In my ViewModel, I have a LiveData observable for the return of that request, but I'm not seeing it update. It seems that my repository method isn't being called and I'm not sure why.
UI Click Listener
searchButton.setOnClickListener{
CoroutineScope(IO).launch{
viewModel.getUser(username.toString())
}
}
ViewModel - Observables and invoked method
private var _user: MutableLiveData<User?> = MutableLiveData<User?>()
val user: LiveData <User?>
get() = _user
...
suspend fun getUser(userId:String) {
_user = liveData{
emit(repository.getUser(userId))
} as MutableLiveData<User?>
}
...
When I debug through, execution goes into the getUser method of the ViewModel but doesn't go into the liveData scope to update my _user MutableLiveData observable and I'm not sure what I'm doing wrong.
There is no need to use liveData coroutine builder because the getUser is a suspended function and you are already calling it in a coroutine. Just post the result simply on _user.
suspend fun getUser(userId: String) {
_user.postValue(repository.getUser(userId))
}
What you did on your code caused assigning a new instance of LiveData to _user, while the observer in the fragment is observing on previous LiveData which is instantiated by private var _user: MutableLiveData<User?> = MutableLiveData<User?>(). So, the update gets lost.
A better solution is to handle the creation of coroutines in your ViewModel class to keep track of them and prevent execution leak.
fun getUser(userId: String) {
viewModelScope.launch(IO) {
_user.postValue(repository.getUser(userId))
}
}
And in the fragment:
searchButton.setOnClickListener{
viewModel.getUser(username.toString())
}
It doesn't work because your "MVVM structure" is not following the MVVM recommendations, nor the structured concurrency guidelines provided for coroutines.
searchButton.setOnClickListener{
CoroutineScope(IO).launch{ // <-- should be using a controlled scope
viewModel.getUser(username.toString()) // <-- state belongs in the viewModel
}
}
Instead, it is supposed to look like this
searchButton.setOnClickListener {
viewModel.onSearchButtonClicked()
}
username.doAfterTextChanged {
viewModel.updateUsername(it)
}
And
class MyViewModel(
private val application: Application,
private val savedStateHandle: SavedStateHandle
): AndroidViewModel(application) {
private val repository = (application as CustomApplication).repository
private val username = savedStateHandle.getLiveData("username", "")
fun updateUsername(username: String) {
username.value = username
}
val user: LiveData<User?> = username.switchMap { userId ->
liveData(viewModelScope + Dispatchers.IO) {
emit(repository.getUser(userId))
}
}
}
Now you can do user.observe(viewLifecycleOwner) { user -> ... } and it should work. If you really do need to fetch only when the button is clicked, you might want to replace the liveData { with a regular suspend fun call, calling from viewModelScope.launch {, and save the value to a LiveData.

Why is ViewModelScoped coroutine unusable after ViewModel onCleared() method called

I am sharing an ActivityScoped viewModel between multiple Fragments in my current Android application.
The viewModel employs Coroutine Scope viewModelScope.launch{}
My issue is the .launch{} only works until the owning ViewModel onCleared() method is called.
Is this how ViewModel scoped coroutines are supposed to work?
Is there an approach I can use to "Reset" the viewModelScope so that .launch{} works following the onCleared() method being called?
heres my code::
Fragment
RxSearchView.queryTextChangeEvents(search)
.doOnSubscribe {
compositeDisposable.add(it)
}
.throttleLast(300, TimeUnit.MILLISECONDS)
.debounce(300, TimeUnit.MILLISECONDS)
.map { event -> event.queryText().toString() }
.observeOn(AndroidSchedulers.mainThread())
.subscribe { charactersResponse ->
launch {
viewModel.search(charactersResponse.trim())
}
}
.
.
.
override fun onDetach() {
super.onDetach()
viewModel.cancelSearch()
compositeDisposable.clear()
}
ViewModel
suspend fun search(searchString: String) {
cancelSearch()
if (TextUtils.isEmpty(searchString)) {
return
}
job = viewModelScope.launch {
repository.search(searchString)
}
}
fun cancelSearch() {
job?.cancelChildren()
}
.
.
.
override fun onCleared() {
super.onCleared()
repository.onCleared()
}
What am I doing wrong?
UPDATE
If I amend my launch code to this
job = GlobalScope.launch {
repository.search(searchString)
}
It solves my issue, however is this the only way to achieve my desired result?
I was under the impression GlobalScope was "Bad"
following a cal to onCleared() my viewModelScoped cororoutine Launch stops executing
That's a feature, not a bug.
Once the ViewModel is cleared, you should not be doing anything in that ViewModel or whatever its LifecycleOwner was. All of that is now defunct and should no longer be used.
however is this the only way to achieve my desired result?
The correct solution is to get rid of the code from the ViewModel. If you are expecting some background work to go past the lifetime of an activity or fragment, then that code does not belong in the activity/fragment or its associated viewmodels. It belongs in something that has a matching lifetime to the work that you are trying to do.
repository.onCleared()
This method should not belong to the Repository.
In fact, the Repository should not be stateful.
If you check Google's samples, the Repository creates a LiveData that contains a Resource, and the reason why this is relevant is because the actual data loading and caching mechanic is inside this resource, triggered by LiveData.onActive (in this sample, MediatorLiveData.addSource, but technically that's semantically the same thing).
.subscribe { charactersResponse ->
launch {
viewModel.search(charactersResponse.trim())
The Fragment shouldn't be launching coroutines. It should say something like
.subscribe {
viewModel.updateSearchText(charactersResponse.trim())
}
and also
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)
viewModel = ViewModelProviders.of(this).get(MyViewModel::class.java, factory)
viewModel.searchResults.observe(viewLifecycleOwner, Observer { results ->
searchAdapter.submitList(results)
})
}
Then ViewModel would
class MyViewModel(
private val repository: MyRepository
): ViewModel() {
private val searchText = MutableLiveData<String>()
fun updateSearchText(searchText: String) {
this.searchText.value = searchText
}
val searchResults: LiveData<List<MyData>> = Transformations.switchMap(searchText) {
repository.search(searchText)
}
}
And that's all there should be in the ViewModel, so then the question of "who owns the coroutine scope"? That depends on when the task should be cancelled.
If "no longer observing" should cancel the task, then it should be LiveData.onInactive() to cancel the task.
If "no longer observing but not cleared" should retain the task, then ViewModel's onCleared should indeed govern a SupervisorJob inside the ViewModel that would be cancelled in onCleared(), and the search should be launched within that scope, which is probably only possible if you pass over the CoroutineScope to the search method.
suspend fun search(scope: CoroutineScope, searchText: String): LiveData<List<T>> =
scope.launch {
withContext(Dispatchers.IO) { // or network or something
val results = networkApi.fetchResults(searchText)
withContext(Dispatchers.MAIN) {
MutableLiveData<List<MyData>>().apply { // WARNING: this should probably be replaced with switchMap over the searchText
this.value = results
}
}
}
}
Would this work? Not sure, I don't actually use coroutines, but I think it should. This example however doesn't handle the equivalent of switchMap-ing inside the LiveData, nor with coroutines.

MVVM architecture with Interactors/UseCases

Context
So, I've been working with the MVVM architecture just for a couple of projects. I'm still trying to figure out and improve how the architecture works. I always worked with the MVP architecture, using the usual toolset, Dagger for DI, usually multi-module projects, the Presenter layer being injected with a bunch of Interactors/UseCases, and each Interactor being injected with different Repositories to perform the backend API calls.
Now that I've moved into MVVM I changed the Presenter layer by the ViewModel, the communication from the ViewModel to the UI layer is being done through LiveData instead of using a View callback interface, and so on.
Looks like this:
class ProductDetailViewModel #inject constructor(
private val getProductsUseCase: GetProductsUseCase,
private val getUserInfoUseCase: GetUserInfoUseCase,
) : ViewModel(), GetProductsUseCase.Callback, GetUserInfoUseCase.Callback {
// Sealed class used to represent the state of the ViewModel
sealed class ProductDetailViewState {
data class UserInfoFetched(
val userInfo: UserInfo
) : ProductDetailViewState(),
data class ProductListFetched(
val products: List<Product>
) : ProductDetailViewState(),
object ErrorFetchingInfo : ProductDetailViewState()
object LoadingInfo : ProductDetailViewState()
}
...
// Live data to communicate back with the UI layer
val state = MutableLiveData<ProductDetailViewState>()
...
// region Implementation of the UseCases callbacks
override fun onSuccessfullyFetchedProducts(products: List<Product>) {
state.value = ProductDetailViewState.ProductListFetched(products)
}
override fun onErrorFetchingProducts(e: Exception) {
state.value = ProductDetailViewState.ErrorFetchingInfo
}
override fun onSuccessfullyFetchedUserInfo(userInfo: UserInfo) {
state.value = ProductDetailViewState.UserInfoFetched(userInfo)
}
override fun onErrorFetchingUserInfo(e: Exception) {
state.value = ProductDetailViewState.ErrorFetchingInfo
}
// Functions to call the UseCases from the UI layer
fun fetchUserProductInfo() {
state.value = ProductDetailViewState.LoadingInfo
getProductsUseCase.execute(this)
getUserInfoUseCase.execute(this)
}
}
There's no rocket science here, sometimes I change the implementation to use more than one LiveData property to keep track of the changes. By the way, this is just an example that I wrote on the fly, so don't expect it to compile. But It's just this, the ViewModel is injected with a bunch of UseCases, it implements the UseCases callback interfaces and when I get the results from the UseCases I communicate that to the UI layer through LiveData.
My UseCases usually look like this:
// UseCase interface
interface GetProductsUseCase {
interface Callback {
fun onSuccessfullyFetchedProducts(products: List<Product>)
fun onErrorFetchingProducts(e: Exception)
}
fun execute(callback: Callback)
}
// Actual implementation
class GetProductsUseCaseImpl(
private val productRepository: ApiProductRepostory
) : GetProductsUseCase {
override fun execute(callback: Callback) {
productRepository.fetchProducts() // Fetches the products from the backend through Retrofit
.subscribe(
{
// onNext()
callback.onSuccessfullyFetchedProducts(it)
},
{
// onError()
callback.onErrorFetchingProducts(it)
}
)
}
}
My Repository classes are usually wrappers for the Retrofit instance and they take care of setting the proper Scheduler so everything runs on the proper thread and mapping the backend responses into model classes. By backend responses I mean classes mapped with Gson (for example
a list of ApiProductResponse) and they get mapped into model classes (for example a List of Product which I use across the App)
Question
My question here is that since I started working with the MVVM architecture all the articles and all the examples, people is either injecting the Repositories right into the ViewModel (duplicating code to handle errors and mapping the responses) or either using the Single Source of Truth pattern (getting the information from Room using Room's Flowables). But I haven't seen anyone use UseCases with a ViewModel layer. I mean it's pretty handy, I get to keep things separated, I do the mapping of the backend responses within the UseCases, I handle any error there. But still, feels odds that I don't see anyone doing this, is there some way to improve the UseCases to make them more friendly to the ViewModels in terms of API? Perform the communication between the UseCases and the ViewModels with something else than a callback interface?
Please let me know if you need any more info about this. Sorry for the examples, I know that these are not the best, I just came out with something simple for sake of explaining it better.
Thanks,
Edit #1
This is how my Repository classes look like:
// ApiProductRepository interface
interface ApiProductRepository {
fun fetchProducts(): Single<NetworkResponse<List<ApiProductResponse>>>
}
// Actual implementation
class ApiProductRepositoryImpl(
private val retrofitApi: ApiProducts, // This is a Retrofit API interface
private val uiScheduler: Scheduler, // AndroidSchedulers.mainThread()
private val backgroundScheduler: Scheduler, // Schedulers.io()
) : GetProductsUseCase {
override fun fetchProducts(): Single<NetworkResponse<List<ApiProductResponse>>> {
return retrofitApi.fetchProducts() // Does the API call using the Retrofit interface. I've the RxAdapter set.
.wrapOnNetworkResponse() // Extended function that converts the Retrofit's Response object into a NetworkResponse class
.observeOn(uiScheduler)
.subscribeOn(backgroundScheduler)
}
}
// The network response class is a class that just carries the Retrofit's Response class status code
Update your use case so that it returns Single<List<Product>>:
class GetProducts #Inject constructor(private val repository: ApiProductRepository) {
operator fun invoke(): Single<List<Product>> {
return repository.fetchProducts()
}
}
Then, update your ViewModel so that it subscribes to the products stream:
class ProductDetailViewModel #Inject constructor(
private val getProducts: GetProducts
): ViewModel() {
val state: LiveData<ProductDetailViewState> get() = _state
private val _state = MutableLiveData<ProductDetailViewState>()
private val compositeDisposable = CompositeDisposable()
init {
subscribeToProducts()
}
override fun onCleared() {
super.onCleared()
compositeDisposable.clear()
}
private fun subscribeToProducts() {
getProducts()
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.main())
.subscribe(
{
// onNext()
_state.value = ProductListFetched(products = it)
},
{
// onError()
_state.value = ErrorFetchingInfo
}
).addTo(compositeDisposable)
}
}
sealed class ProductDetailViewState {
data class ProductListFetched(
val products: List<Product>
): ProductDetailViewState()
object ErrorFetchingInfo : ProductDetailViewState()
}
One thing I'm leaving out it is the adaptation of List<ApiProductResponse>> to List<Product> but that can be handled by mapping the list with a helper function.
I have just started using MVVM for the last 2 of my projects. I can share with you my process of dealing with REST APIs in ViewModel. Hope it will help you and others.
Make a Generic Retrofit Executer Class with their callbacks. which will take a retrofit call object and gives you data.
Make a repository for Your particular package or module where you can handle all API request. in my case, I am getting one user by its id from API.
Here is User Repository.
class UserRepository {
#Inject
lateinit var mRetrofit: Retrofit
init {
MainApplication.appComponent!!.inject(this)
}
private val userApi = mRetrofit.create(UserApi::class.java)
fun getUserbyId(id: Int): Single<NetworkResponse<User>> {
return Single.create<NetworkResponse<User>>{
emitter ->
val callbyId = userApi.getUserbyId(id)
GenericReqExecutor(callbyId).executeCallRequest(object : ExecutionListener<User>{
override fun onSuccess(response: User) {
emitter.onSuccess(NetworkResponse(success = true,
response = response
))
}
override fun onApiError(error: NetworkError) {
emitter.onSuccess(NetworkResponse(success = false,
response = User(),
networkError = error
))
}
override fun onFailure(error: Throwable) {
emitter.onError(error)
}
})
}
}
}
Then Use this Repository in your ViewModel. In my case here is my LoginViewModel code.
class LoginViewModel : ViewModel() {
var userRepo = UserRepository()
fun getUserById(id :Int){
var diposable = userRepo.getUserbyId(id).subscribe({
//OnNext
},{
//onError
})
}
}
I hope this approach can help you to reduce some of your boilerplate code.
Thanks
I had the same question when I started using MVVM a while ago. I came up with the following solution, based on Kotlin suspend functions and coroutines:
Change ApiProductRepositoryImpl.fetchProducts() to run synchronously. To do this, change your retrofit interface to return Call<...> and then change the repository implementation to
// error handling omitted for brevity
override fun fetchProducts() = retrofitApi.fetchProducts().execute().body()
Make your use cases implement the following interface:
interface UseCase<InputType, OutputType> {
suspend fun execute(input: InputType): OutputType
}
so your GetProductsUseCase would look like this:
class GetProductsUseCase: UseCase<Unit, List<Product>> {
suspend fun execute(input: Unit): List<Product> = withContext(Dispatchers.IO){
// withContext causes this block to run on a background thread
return#withContext productRepository.fetchProducts()
}
Execute the use case in your ViewModel
launch {
state.value = ProductDetailViewState.ProductListFetched(getProductsUseCase.execute())
}
See https://github.com/snellen/umvvm for more info and examples.

Clean Architecture: ViewModel with multiple UseCases on Android

This is more of an Architecture question than a bug fixing one.
Let's assume this app lets users mark a Bus and/or Bus Stations as a favourite. My question is, should I have a ViewModel with both UseCases or should I build a UseCase that encapsulates the current logic?
Also for the question part, I'm not entirely sure the way I should expose the combined data to the UI layer (see favouritesExposedLiveData)
Thanks in advance any feedback is welcome, here's my ViewModel you can assume each UseCase is passing the correct data from the data source(s).
open class FavouritesViewModel #Inject internal constructor(
private val getFavouriteStationsUseCase: GetFavouriteStationsUseCase,
private val getFavouriteBusesUseCase: GetFavouriteBusesUseCase,
private val favouriteMapper: FavouriteMapper,
private val busMapper: BusMapper,
private val stationMapper: StationMapper) : ViewModel() {
private val favouriteBusesLiveData: MutableLiveData<Resource<List<BusView>>> = MutableLiveData()
private val favouriteStationsLiveData: MutableLiveData<Resource<List<StationView>>> = MutableLiveData()
private lateinit var favouritesMediatorLiveData: MediatorLiveData<List<FavouriteView>>
private lateinit var favouritesExposedLiveData: LiveData<Resource<List<FavouriteView>>>
init {
fetchFavourites()
}
override fun onCleared() {
getFavouriteStationsUseCase.dispose()
getFavouriteBusesUseCase.dispose()
super.onCleared()
}
fun getFavourites(): LiveData<Resource<List<FavouriteView>>> {
return favouritesExposedLiveData
}
private fun fetchFavourites() {
favouritesMediatorLiveData.addSource(favouriteStationsLiveData, { favouriteStationListResource ->
if (favouriteStationListResource?.status == ResourceState.SUCCESS) {
favouriteStationListResource.data?.map {
favouriteMapper.mapFromView(it)
}
}
})
favouritesMediatorLiveData.addSource(favouriteBusesLiveData, { favouriteBusesListResource ->
if (favouriteBusesListResource?.status == ResourceState.SUCCESS) {
favouriteBusesListResource.data?.map {
favouriteMapper.mapFromView(it)
}
}
})
getFavouriteStationsUseCase.execute(FavouriteStationsSubscriber())
getFavouriteBusesUseCase.execute(FavouriteBusesSubscriber())
}
inner class FavouriteStationsSubscriber : DisposableSubscriber<List<Station>>() {
override fun onComplete() {}
override fun onNext(t: List<Station>) {
favouriteStationsLiveData.postValue(Resource(ResourceState.SUCCESS, t.map { stationMapper.mapToView(it) }, null))
}
override fun onError(exception: Throwable) {
favouriteStationsLiveData.postValue(Resource(ResourceState.ERROR, null, exception.message))
}
}
inner class FavouriteBusesSubscriber : DisposableSubscriber<List<Bus>>() {
override fun onComplete() {}
override fun onNext(t: List<Bus>) {
favouriteBusesLiveData.postValue(Resource(ResourceState.SUCCESS, t.map { busMapper.mapToView(it) }, null))
}
override fun onError(exception: Throwable) {
favouriteBusesLiveData.postValue(Resource(ResourceState.ERROR, null, exception.message))
}
}
}
Note: Currently the MediatorLiveData (favouritesMediatorLiveData)is not binding the data back to the favouritesExposedLiveData since at this time, I'm not sure this is the correct way to go ;).
Ideally a ViewModel would only have the view state for its view. By using the MediatorLiveData you could aggregate all sources of state into one that represents the view state over time.
What you can have is a data class that represents your ViewState that you construct on your view model and is your exposed LiveData
data class FavouritesViewState(val favoriteStations: List<Station>, val favoritBuses: List<Bus>)
However you know depend on the ViewModel to construct the final ViewState which kinda breaks the single responsibility principle and also makes you dependent of an Android framework.
I would approach it using a composite UseCase that had both station and bus use cases and returns the composed data that you can then easily expose from the ViewModel.
The whole point of a ViewModel is that it is a model of what the view is using. It should be as close to that as possible.. Unless you are presenting stations and buses in the same view list (seems ugly), otherwise, they are separate views, and should get separate models.

Categories

Resources