JetPack Compose + Room + LiveData + ViewModel - android

In a Jetpack Compose component I'm subscribing to Room LiveData object using observeAsState.
The initial composition goes fine, data is received from ViewModel/LiveData/Room.
val settings by viewModel.settings.observeAsState(initial = AppSettings()) // Works fine the first time
A second composition is initiated, where settings - A non nullable variable is set to null, and the app crashed with an NPE.
DAO:
#Query("select * from settings order by id desc limit 1")
fun getSettings(): LiveData<AppSettings>
Repository:
fun getSettings(): LiveData<AppSettings> {
return dao.getSettings()
}
ViewModel:
#HiltViewModel
class SomeViewModel #Inject constructor(
private val repository: AppRepository
) : ViewModel() {
val settings = repository.getSettings()
}
Compose:
#OptIn(ExperimentalFoundationApi::class)
#Composable
fun ItemsListScreen(viewModel: AppViewModel = hiltViewModel()) {
val settings by viewModel.settings.observeAsState(initial = AppSettings())
Edit:
Just to clearify, the DB data does not change. the first time settings is fetched within the composable, a valid instance is returned.
Then the component goes into recomposition, when ItemsListScreen is invoked for the second time, then settings is null (the variable in ItemsListScreen).

Once the LiveData<Appsettings> is subscribed to will have a default value of null. So you get the default value required by a State<T> object, when you call LiveData<T>::observeAsState, followed by the default LiveData<T> value, this being null
LiveData<T> is a Java class that allows nullable objects. If your room database doesn't have AppSettings it will set it a null object on the LiveData<AppSettings> instance. As Room is also a Java library and not aware of kotlin language semantics.
Simply put this is an interop issue.
You should use LiveData<AppSettings?> in kotlin code and handle null objects, or use some sort of MediatorLiveData<T> that can filter null values for example some extensions functions like :
#Composable
fun <T> LiveData<T?>.observeAsNonNullState(initial : T & Any, default : T & Any) : State<T> =
MediatorLiveData<T>().apply {
addSource(this) { t -> value = t ?: default }
}.observeAsState(initial = initial)
#Composable
fun <T> LiveData<T?>.observeAsNonNullState(initial : T & Any) : State<T> =
MediatorLiveData<T>().apply {
addSource(this) { t -> t?.run { value = this } }
}.observeAsState(initial = initial)

If you only need to fetch settings when viewModel is initialised, you can try putting it in an init block inside your ViewModel.

Related

How to update properties of data class show compose ui can observe the changes

I have a CounterScreenUiState data class with a single property called counterVal (integer). If I am updating the value of my counter from viewModel which of the following is the correct approach?
Approach A:
data class CounterUiState(
val counterVal: Int = 0,
)
class CounterViewModel : ViewModel() {
var uiState by mutableStateOf(CounterUiState())
private set
fun inc() {
uiState = uiState.copy(counterVal = uiState.counterVal + 1)
}
fun dec() {
uiState = uiState.copy(counterVal = uiState.counterVal - 1)
}
}
or
Approach B:
data class CounterUiState(
var counterVal: MutableState<Int> = mutableStateOf(0)
)
class CounterViewModel : ViewModel() {
var uiState by mutableStateOf(CounterUiState())
private set
fun inc() {
uiState.counterVal.value = uiState.counterVal.value + 1
}
fun dec() {
uiState.counterVal.value = uiState.counterVal.value - 1
}
}
For the record, I tried both approach and both works well without unnecessary re-compositions.
Thanks in Advance!!!
So to summarize, "implementation" and "performance" wise, your'e only
choice is A.
This is not true. It's a common pattern that is used other Google's sample apps, JetSnack for instance, and default functions like rememberScrollable or Animatable are the ones that come to my mind. And in that article it's also shared as
#Stable
class MyStateHolder {
var isLoading by mutableStateOf(false)
}
or
#Stable
class ScrollState(initial: Int) : ScrollableState {
/**
* current scroll position value in pixels
*/
var value: Int by mutableStateOf(initial, structuralEqualityPolicy())
private set
// rest of the code
}
Animatable class
class Animatable<T, V : AnimationVector>(
initialValue: T,
val typeConverter: TwoWayConverter<T, V>,
private val visibilityThreshold: T? = null,
val label: String = "Animatable"
) {
internal val internalState = AnimationState(
typeConverter = typeConverter,
initialValue = initialValue
)
/**
* Current value of the animation.
*/
val value: T
get() = internalState.value
/**
* The target of the current animation. If the animation finishes un-interrupted, it will
* reach this target value.
*/
var targetValue: T by mutableStateOf(initialValue)
private set
}
Omitted some code from Animatable for simplicity but as can be seen it's a common pattern to use a class that hold one or multiple MutableStates. Even type AnimationState hold its own MutableState.
You can create state holder classes and since these are not e not variables but states without them changing you won't have recompositions unless these states change. The thing needs to be changed with option B is instead of using
data class CounterUiState(
var counterVal: MutableState<Int> = mutableStateOf(0)
)
You should change it to
class CounterUiState(
var counterVal by mutableStateOf(0)
)
since you don't need to set new instance of State itself but only the value.
And since you already wrap your states inside your uiState there is no need to use
var uiState by mutableStateOf(CounterUiState())
private set
you can have this inside your ViewModel as
val uiState = CounterUiState()
or inside your Composable after wrapping with remember
#Composable
fun rememberCounterUiState(): CounterUiState = remember {
CounterUiState()
}
With this pattern you can store States in one class and hold variables that should not trigger recomposition as part of internal calculations and it's up to developer expose these non-state variables based on the design.
https://github.com/android/compose-samples/blob/main/Jetsnack/app/src/main/java/com/example/jetsnack/ui/home/search/Search.kt
#Stable
class SearchState(
query: TextFieldValue,
focused: Boolean,
searching: Boolean,
categories: List<SearchCategoryCollection>,
suggestions: List<SearchSuggestionGroup>,
filters: List<Filter>,
searchResults: List<Snack>
) {
var query by mutableStateOf(query)
var focused by mutableStateOf(focused)
var searching by mutableStateOf(searching)
var categories by mutableStateOf(categories)
var suggestions by mutableStateOf(suggestions)
var filters by mutableStateOf(filters)
var searchResults by mutableStateOf(searchResults)
val searchDisplay: SearchDisplay
get() = when {
!focused && query.text.isEmpty() -> SearchDisplay.Categories
focused && query.text.isEmpty() -> SearchDisplay.Suggestions
searchResults.isEmpty() -> SearchDisplay.NoResults
else -> SearchDisplay.Results
}
}
Also for skippibility
Compose will treat your CounterUiState as unstable and down the road
it will definitely cause you headaches because what ever you do,
This is misleading. Most of the time optimizing for skippability is premature optimization as mentioned in that article and the one shared by originally Chris Banes.
Should every Composable be skippable? No.
Chasing complete skippability for every composable in your app is a
premature optimization. Being skippable actually adds a small overhead
of its own which may not be worth it, you can even annotate your
composable to be non-restartable in cases where you determine that
being restartable is more overhead than it’s worth. There are many
other situations where being skippable won’t have any real benefit and
will just lead to hard to maintain code. For example:
A composable that is not recomposed often, or at all.

Flow provides null from room database but it should have data

I started building my app using Room, Flow, LiveData and Coroutines, and have come across something odd: what I'm expecting to be a value flow actually has one null item in it.
My setup is as follows:
#Dao
interface BookDao {
#Query("SELECT * FROM books WHERE id = :id")
fun getBook(id: Long): Flow<Book>
}
#Singleton
class BookRepository #Inject constructor(
private val bookDao: BookDao
) {
fun getBook(id: Long) = bookDao.getBook(id).filterNotNull()
}
#HiltViewModel
class BookDetailViewModel #Inject internal constructor(
savedStateHandle: SavedStateHandle,
private val bookRepository: BookRepository,
private val chapterRepository: ChapterRepository,
) : ViewModel() {
val bookID: Long = savedStateHandle.get<Long>(BOOK_ID_SAVED_STATE_KEY)!!
val book = bookRepository.getBook(bookID).asLiveData()
fun getChapters(): LiveData<PagingData<Chapter>> {
val lastChapterID = book.value.let { book ->
book?.lastChapterID ?: 0L
}
val chapters = chapterRepository.getChapters(bookID, lastChapterID)
return chapters.asLiveData()
}
companion object {
private const val BOOK_ID_SAVED_STATE_KEY = "bookID"
}
}
#AndroidEntryPoint
class BookDetailFragment : Fragment() {
private var queryJob: Job? = null
private val viewModel: BookDetailViewModel by viewModels()
override fun onResume() {
super.onResume()
load()
}
private fun load() {
queryJob?.cancel()
queryJob = lifecycleScope.launch() {
val bookName = viewModel.book.value.let { book ->
book?.name
}
binding.toolbar.title = bookName
Log.i(TAG, "value: $bookName")
}
viewModel.book.observe(viewLifecycleOwner) { book ->
binding.toolbar.title = book.name
Log.i(TAG, "observe: ${book.name}")
}
}
}
Then I get a null value in lifecycleScope.launch while observe(viewLifecycleOwner) gets a normal value.
I think it might be because of sync and async issues, but I don't know the exact reason, and how can I use LiveData<T>.value to get the value?
Because I want to use it in BookDetailViewModel.getChapters method.
APPEND: In the best practice example of Android Jetpack (Sunflower), LiveData.value (createShareIntent method of PlantDetailFragment) works fine.
APPEND 2: The getChapters method returns a paged data (Flow<PagingData<Chapter>>). If the book triggers an update, it will cause the page to be refreshed again, confusing the UI logic.
APPEND 3: I found that when I bind BookDetailViewModel with DataBinding, BookDetailViewModel.book works fine and can get book.value.
LiveData.value has extremely limited usefulness because you might be reading it when no value is available yet.
You’re checking the value of your LiveData before it’s source Flow can emit its first value, and the initial value of a LiveData before it emits anything is null.
If you want getChapters to be based on the book LiveData, you should do a transformation on the book LiveData. This creates a LiveData that under the hood observes the other LiveData and uses that to determine what it publishes. In this case, since the return value is another LiveData, switchMap is appropriate. Then if the source book Flow emits another version of the book, the LiveData previously retrieved from getChapters will continue to emit, but it will be emitting values that are up to date with the current book.
fun getChapters(): LiveData<PagingData<Chapter>> =
Transformations.switchMap(book) { book ->
val lastChapterID = book.lastChapterID
val chapters = chapterRepository.getChapters(bookID, lastChapterID)
chapters.asLiveData()
}
Based on your comment, you can call take(1) on the Flow so it will not change the LiveData book value when the repo changes.
val book = bookRepository.getBook(bookID).take(1).asLiveData()
But maybe you want the Book in that LiveData to be able to be changed when the repo changes, and what you want is that the Chapters LiveData retrieved previously does not change? So you need to manually get it again if you want it to be based on the latest Book? If that's the case, you don't want to be using take(1) there which would prevent the book from appearing updated in the book LiveData.
I would personally in that case use a SharedFlow instead of LiveData, so you could avoid retrieving the values twice, but since you're currently working with LiveData, here's a possible solution that doesn't require you to learn those yet. You could use a temporary Flow of your LiveData to easily get its current or first value, and then use that in a liveData builder function in the getChapters() function.
fun getChapters(): LiveData<PagingData<Chapter>> = liveData {
val singleBook = book.asFlow().first()
val lastChapterID = singleBook.lastChapterID
val chapters = chapterRepository.getChapters(bookID, lastChapterID)
emitSource(chapters)
}

Collect transformed StateFlow in Composable

There is function collectAsState() applicable to a StateFlow property in order to observe it in a Composable.
A composable requires a StateFlow because StateFlow guarantees an initial value. A Flow doesn't come with that guarantee.
Now, what is the way to go if I have a StateFlow property but I want to apply an operator (like map) before collecting the Flow in the Composable?
Here an example:
Let's say a repository exposes a StateFlow<MyClass>
val myClassStateFlow: StateFlow<MyClass>
data class MyClass(val a: String)
... and a view model has a dependency on the repository and wants to expose only the property a to its Composable...
val aFlow = myClassState.Flow.map { it.a } // <- this is of type Flow<String>
The map operator changes the type from StateFlow<MyClass> to Flow<String>.
Is it semantically justified that aFlow has no initial value anymore? After all its first emission is derived from the initial value of myClassStateFlow.
It's required to convert Flow back into StateFlow at some point. Which is the more idiomatic place for this?
In the view model using stateIn()? How would the code look like?
In the composable using collectAsState(initial: MyClass) and come up with an initial value (although myClassStateFlow had an initial value)?
See this issue on GitHub
Currently there is no built-in way to transform StateFlows, only Flows. But you can write your own.
Way I ended up solving was to use the example in that post.
First create a notion of a DerivedStateFlow.
class DerivedStateFlow<T>(
private val getValue: () -> T,
private val flow: Flow<T>
) : StateFlow<T> {
override val replayCache: List<T>
get () = listOf(value)
override val value: T
get () = getValue()
#InternalCoroutinesApi
override suspend fun collect(collector: FlowCollector<T>) {
flow.collect(collector)
}
}
Then have an extension on StateFlow like the current map extension on Flow
fun <T1, R> StateFlow<T1>.mapState(transform: (a: T1) -> R): StateFlow<R> {
return DerivedStateFlow(
getValue = { transform(this.value) },
flow = this.map { a -> transform(a) }
)
}
Now in your Repository or ViewModel, you can use it as below.
class MyViewModel( ... ) {
private val originalStateFlow:StateFlow<SomeT> = ...
val someStateFlowtoExposeToCompose =
originalStateFlow
.mapState { item ->
yourTransform(item)
}
}
Now you can consume it as you expect in Compose without any special work, since it returns a StateFlow.

Jetpack Compose: Modify Room data class using TextField

Modifying simple values and data classes using EditText is fairly straight forward, and generally looks like this:
data class Person(var firstName: String, var lastName: Int)
// ...
val (person, setPerson) = remember { mutableStateOf(Person()) }
// common `onChange` function handles both class properties, ensuring maximum code re-use
fun <T> onChange(field: KMutableProperty1<Person, T>, value: T) {
val nextPerson = person.copy()
field.set(nextPerson, value)
setPerson(nextPerson)
}
// text field for first name
TextField(
value = person.firstName,
onChange = { it -> onChange(Person::firstName, it) })
// text field for last name name
TextField(
value = person.lastName,
onChange = { it -> onChange(Person::lastName, it) })
As you can see, the code in this example is highly reusable: thanks to Kotlin's reflection features, we can use a single onChange function to modify every property in this class.
However, a problem arises when the Person class is not instantiated from scratch, but rather pulled from disk via Room. For example, a PersonDao might contain a `findOne() function like so:
#Query("SELECT * FROM peopleTable WHERE id=:personId LIMIT 1")
fun findOne(personId: String): LiveData<Person>
However, you cannot really use this LiveData in a remember {} for many reasons:
While LiveData has a function called observeAsState(), it returns State<T> and not MutableState<T>, meaning that you cannot modify it with the TextFields. As such this does not work:
remember { personFromDb.observeAsState()}
You cannot .copy() the Person that you get from your database because your component will render before the Room query is returned, meaning that you cannot do this, because the Person class instance will be remembered as null:
remember { mutableStateOf(findPersonQueryResult.value) }
Given that, what is the proper way to handle this? Should the component that contains the TextFields be wrapped in another component that handles the Room query, and only displays the form when the query is returned? What would that look like with this case of LiveData<Person>?
I would do it with a copy and an immutable data class
typealias PersonID = Long?
#Entity
data class Person(val firstName: String, val lastName: String) {
#PrimaryKey(autoGenerate = true)
val personID: PersonID = null
}
//VM or sth
object VM {
val liveData: LiveData<Person> = MutableLiveData() // your db call
val personDao: PersonDao? = null // Pretending it exists
}
#Dao
abstract class PersonDao {
abstract fun upsert(person: Person)
}
#Composable
fun test() {
val personState = VM.liveData.observeAsState(Person("", ""))
TextField(
value = personState.value.firstName,
onValueChange = { fName -> VM.personDao?.upsert(personState.value.copy(firstName = fName))}
)
}

Android - Best Practices for ViewModel State in MVVM?

I am working on an Android App using the MVVM pattern along LiveData (possibly Transformations) and DataBinding between View and ViewModel. Since the app is "growing", now ViewModels contain lots of data, and most of the latter are kept as LiveData to have Views subscribe to them (of course, this data is needed for the UI, be it a Two-Way Binding as per EditTexts or a One-Way Binding). I heard (and googled) about keeping data that represents the UI state in the ViewModel. However, the results I found were just simple and generic. I would like to know if anyone has hints or could share some knowledge on best practices for this case. In simple words, What could be the best way to store the state of an UI (View) in a ViewModel considering LiveData and DataBinding available? Thanks in advance for any answer!
I struggled with the same problem at work and can share what is working for us. We're developing 100% in Kotlin so the following code samples will be as well.
UI state
To prevent the ViewModel from getting bloated with lots of LiveData properties, expose a single ViewState for views (Activity or Fragment) to observe. It may contain the data previously exposed by the multiple LiveData and any other info the view might need to display correctly:
data class LoginViewState (
val user: String = "",
val password: String = "",
val checking: Boolean = false
)
Note, that I'm using a Data class with immutable properties for the state and deliberately don't use any Android resources. This is not something specific to MVVM, but an immutable view state prevents UI inconsistencies and threading problems.
Inside the ViewModel create a LiveData property to expose the state and initialize it:
class LoginViewModel : ViewModel() {
private val _state = MutableLiveData<LoginViewState>()
val state : LiveData<LoginViewState> get() = _state
init {
_state.value = LoginViewState()
}
}
To then emit a new state, use the copy function provided by Kotlin's Data class from anywhere inside the ViewModel:
_state.value = _state.value!!.copy(checking = true)
In the view, observe the state as you would any other LiveData and update the layout accordingly. In the View layer you can translate the state's properties to actual view visibilities and use resources with full access to the Context:
viewModel.state.observe(this, Observer {
it?.let {
userTextView.text = it.user
passwordTextView.text = it.password
checkingImageView.setImageResource(
if (it.checking) R.drawable.checking else R.drawable.waiting
)
}
})
Conflating multiple data sources
Since you probably previously exposed results and data from database or network calls in the ViewModel, you may use a MediatorLiveData to conflate these into the single state:
private val _state = MediatorLiveData<LoginViewState>()
val state : LiveData<LoginViewState> get() = _state
_state.addSource(databaseUserLiveData, { name ->
_state.value = _state.value!!.copy(user = name)
})
...
Data binding
Since a unified, immutable ViewState essentially breaks the notification mechanism of the Data binding library, we're using a mutable BindingState that extends BaseObservable to selectively notify the layout of changes. It provides a refresh function that receives the corresponding ViewState:
Update: Removed the if statements checking for changed values since the Data binding library already takes care of only rendering actually changed values. Thanks to #CarsonHolzheimer
class LoginBindingState : BaseObservable() {
#get:Bindable
var user = ""
private set(value) {
field = value
notifyPropertyChanged(BR.user)
}
#get:Bindable
var password = ""
private set(value) {
field = value
notifyPropertyChanged(BR.password)
}
#get:Bindable
var checkingResId = R.drawable.waiting
private set(value) {
field = value
notifyPropertyChanged(BR.checking)
}
fun refresh(state: AngryCatViewState) {
user = state.user
password = state.password
checking = if (it.checking) R.drawable.checking else R.drawable.waiting
}
}
Create a property in the observing view for the BindingState and call refresh from the Observer:
private val state = LoginBindingState()
...
viewModel.state.observe(this, Observer { it?.let { state.refresh(it) } })
binding.state = state
Then, use the state as any other variable in your layout:
<layout ...>
<data>
<variable name="state" type=".LoginBindingState"/>
</data>
...
<TextView
...
android:text="#{state.user}"/>
<TextView
...
android:text="#{state.password}"/>
<ImageView
...
app:imageResource="#{state.checkingResId}"/>
...
</layout>
Advanced info
Some of the boilerplate would definitely benefit from extension functions and Delegated properties like updating the ViewState and notifying changes in the BindingState.
If you want more info on state and status handling with Architecture Components using a "clean" architecture you may checkout Eiffel on GitHub.
It's a library I created specifically for handling immutable view states and data binding with ViewModel and LiveData as well as glueing it together with Android system operations and business use cases.
The documentation goes more in depth than what I'm able to provide here.
Android Unidirectional Data Flow (UDF) 2.0
Update 12/18/2019: Android Unidirectional Data Flow with LiveData — 2.0
I've designed a pattern based on the Unidirectional Data Flow using Kotlin with LiveData.
UDF 1.0
Check out the full Medium post or YouTube talk for an in-depth explanation.
Medium - Android Unidirectional Data Flow with LiveData
YouTube - Unidirectional Data Flow - Adam Hurwitz - Medellín Android Meetup
Code Overview
Step 1 of 6 — Define Models
ViewState.kt
// Immutable ViewState attributes.
data class ViewState(val contentList:LiveData<PagedList<Content>>, ...)
// View sends to business logic.
sealed class ViewEvent {
data class ScreenLoad(...) : ViewEvent()
...
}
// Business logic sends to UI.
sealed class ViewEffect {
class UpdateAds : ViewEffect()
...
}
Step 2 of 6 — Pass events to ViewModel
Fragment.kt
private val viewEvent: LiveData<Event<ViewEvent>> get() = _viewEvent
private val _viewEvent = MutableLiveData<Event<ViewEvent>>()
override fun onCreate(savedInstanceState: Bundle?) {
...
if (savedInstanceState == null)
_viewEvent.value = Event(ScreenLoad(...))
}
override fun onResume() {
super.onResume()
viewEvent.observe(viewLifecycleOwner, EventObserver { event ->
contentViewModel.processEvent(event)
})
}
Step 3 of 6 — Process events
ViewModel.kt
val viewState: LiveData<ViewState> get() = _viewState
val viewEffect: LiveData<Event<ViewEffect>> get() = _viewEffect
private val _viewState = MutableLiveData<ViewState>()
private val _viewEffect = MutableLiveData<Event<ViewEffect>>()
fun processEvent(event: ViewEvent) {
when (event) {
is ViewEvent.ScreenLoad -> {
// Populate view state based on network request response.
_viewState.value = ContentViewState(getMainFeed(...),...)
_viewEffect.value = Event(UpdateAds())
}
...
}
Step 4 of 6 — Manage Network Requests with LCE Pattern
LCE.kt
sealed class Lce<T> {
class Loading<T> : Lce<T>()
data class Content<T>(val packet: T) : Lce<T>()
data class Error<T>(val packet: T) : Lce<T>()
}
Result.kt
sealed class Result {
data class PagedListResult(
val pagedList: LiveData<PagedList<Content>>?,
val errorMessage: String): ContentResult()
...
}
Repository.kt
fun getMainFeed(...)= MutableLiveData<Lce<Result.PagedListResult>>().also { lce ->
lce.value = Lce.Loading()
/* Firestore request here. */.addOnCompleteListener {
// Save data.
lce.value = Lce.Content(ContentResult.PagedListResult(...))
}.addOnFailureListener {
lce.value = Lce.Error(ContentResult.PagedListResult(...))
}
}
Step 5 of 6 — Handle LCE States
ViewModel.kt
private fun getMainFeed(...) = Transformations.switchMap(repository.getFeed(...)) {
lce -> when (lce) {
// SwitchMap must be observed for data to be emitted in ViewModel.
is Lce.Loading -> Transformations.switchMap(/*Get data from Room Db.*/) {
pagedList -> MutableLiveData<PagedList<Content>>().apply {
this.value = pagedList
}
}
is Lce.Content -> Transformations.switchMap(lce.packet.pagedList!!) {
pagedList -> MutableLiveData<PagedList<Content>>().apply {
this.value = pagedList
}
}
is Lce.Error -> {
_viewEffect.value = Event(SnackBar(...))
Transformations.switchMap(/*Get data from Room Db.*/) {
pagedList -> MutableLiveData<PagedList<Content>>().apply {
this.value = pagedList
}
}
}
Step 6 of 6 — Observe State Change!
Fragment.kt
contentViewModel.viewState.observe(viewLifecycleOwner, Observer { viewState ->
viewState.contentList.observe(viewLifecycleOwner, Observer { contentList ->
adapter.submitList(contentList)
})
...
}

Categories

Resources